Zobrazeno 1 - 10
of 20
pro vyhledávání: '"Zingano, Janaína P."'
In this note we estimate herd immunity levels for the Covid-19 epidemic using a standard SEIR system that models the disease dynamics in homogeneous populations. The results obtained are indicative of values between 80% and 90% for unprotected, fully
Externí odkaz:
http://arxiv.org/abs/2105.01808
We discuss the generation of various reproduction ratios or numbers that are very useful to monitor an ongoing epidemic like Covid-19 and examine the effects of intervention measures. A detailed SEIR algorithm is described for their computation, with
Externí odkaz:
http://arxiv.org/abs/2006.13752
Publikováno v:
Journal of Mathematical Physics, vol. 56, 07 1504 (2015)
We show that t^{3/4}|| u(.,t) ||_{sup} --> 0 as t --> infty for all (global) Leray solutions of the incompressible Navier-Stokes equations in R3. It is also shown that t || u(.,t) - v(.,t) ||_{sup} --> 0 as t --> infty, where v(.,t) is the Stokes app
Externí odkaz:
http://arxiv.org/abs/1807.00197
We obtain a new inequality that holds for general Leray solutions of the incompressible Navier-Stokes equations in Rn (n <= 4). This recovers important results previously obtained by other authors regarding the time decay of solution derivatives (of
Externí odkaz:
http://arxiv.org/abs/1707.00094
In this small note we strengthen the classic result about the regularity time t* of arbitrary Leray solutions to the (incompressible) Navier-Stokes equations in Rn (n = 3, 4), which have the form: t* <= K_{3} nu^{-5} || u(.,0) ||_{L2}^{4} if n = 3, a
Externí odkaz:
http://arxiv.org/abs/1706.10173
We provide a detailed (and fully rigorous) derivation of several fundamental properties of bounded weak solutions to initial-value problems for general conservative 2nd-order parabolic equations with p-Laplacian diffusion and (arbitrary) bounded and
Externí odkaz:
http://arxiv.org/abs/1706.01438
Publikováno v:
European Journal of Mathematics; Dec2024, Vol. 10 Issue 4, p1-10, 10p
We obtain the optimal value of the constant K(n,s) in the Sobolev-Nirenberg-Gagliardo inequality $ \|\,u\,\|_{L^{\infty}(\mathbb{R}^{n})} \leq K(n,s) \,\|\, u \,\|_{L^{2}(\mathbb{R}^{n})}^{1 - n/(2s)} \|\, u \,\|_{\dot{H}^{s}(\mathbb{R}^{n})}^{n/(2s)
Externí odkaz:
http://arxiv.org/abs/1602.01902
Publikováno v:
In Comptes rendus - Mathématique May 2016 354(5):503-509
Publikováno v:
European Journal of Mathematics; December 2024, Vol. 10 Issue: 4