Zobrazeno 1 - 10
of 175
pro vyhledávání: '"Zilles, S."'
Publikováno v:
Journal of Machine Learning Research
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=od______1874::849ec81ddb4c7aae804bd4ed6ab18121
https://hdl.handle.net/21.11116/0000-000C-7CCF-121.11116/0000-000C-7CD1-D
https://hdl.handle.net/21.11116/0000-000C-7CCF-121.11116/0000-000C-7CD1-D
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
Advances in Neural Information Processing Systems 35
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=od______1874::d9825a793046c82e380073ea9faefb1d
https://hdl.handle.net/21.11116/0000-000C-1601-A21.11116/0000-000C-D2CB-2
https://hdl.handle.net/21.11116/0000-000C-1601-A21.11116/0000-000C-D2CB-2
Publikováno v:
Journal of Machine Learning Research
Formal models of learning from teachers need to respect certain criteria to avoid collusion. The most commonly accepted notion of collusion-freeness was proposed by Goldman and Mathias (1996), and various teaching models obeying their criterion have
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::26021a1d873c673e7d5c41c808229201
In this paper we try to organize machine teaching as a coherent set of ideas. Each idea is presented as varying along a dimension. The collection of dimensions then form the problem space of machine teaching, such that existing teaching problems can
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=od______1874::298892c83023bd8f13adcfff98473c6a
https://hdl.handle.net/21.11116/0000-0003-4254-421.11116/0000-0003-4256-2
https://hdl.handle.net/21.11116/0000-0003-4254-421.11116/0000-0003-4256-2
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
Scopus-Elsevier
Optimal planning and heuristic search systems solve state-space searchproblems by finding a least-cost path from start to goal. As a byproduct of having an optimal path they also determine the optimal solution cost. In this paper we focus on the prob
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
Algorithmic Learning Theory: 26th International Conference, ALT 2015, Banff, AB, Canada, October 4-6, 2015 : proceedings, 379-394
STARTPAGE=379;ENDPAGE=394;TITLE=Algorithmic Learning Theory
Lecture Notes in Computer Science ISBN: 9783319244853
ALT
STARTPAGE=379;ENDPAGE=394;TITLE=Algorithmic Learning Theory
Lecture Notes in Computer Science ISBN: 9783319244853
ALT
Kolmogorov complexity measures the amount of information in data, but does not distinguish structure from noise. Kolmogorov’s definition of the structure function was the first attempt to measure only the structural information in data, by measurin
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::3892c4f2589a30e70a274ce817d4e316
https://dare.uva.nl/personal/pure/en/publications/two-problems-for-sophistication(73820b56-7045-494a-9800-3cf1ebd88a33).html
https://dare.uva.nl/personal/pure/en/publications/two-problems-for-sophistication(73820b56-7045-494a-9800-3cf1ebd88a33).html
Autor:
Bloem, P., Mota, F., de Rooij, S., Antunes, L., Adriaans, P., Auer, P., Clark, A., Zeugman, T., Zilles, S.
Publikováno v:
Lecture Notes in Computer Science ISBN: 9783319116617
ALT
Algorithmic Learning Theory: 25th International Conference, ALT 2014, Bled, Slovenia, October 8-10, 2014 : proceedings, 336-350
STARTPAGE=336;ENDPAGE=350;TITLE=Algorithmic Learning Theory
ALT
Algorithmic Learning Theory: 25th International Conference, ALT 2014, Bled, Slovenia, October 8-10, 2014 : proceedings, 336-350
STARTPAGE=336;ENDPAGE=350;TITLE=Algorithmic Learning Theory
Kolmogorov complexity (K) is an incomputable function. It can be approximated from above but not to arbitrary given precision and it cannot be approximated from below. By restricting the source of the data to a specific model class, we can construct
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::65c54c9b9568c129c3cf28a79bc0fd5c
https://doi.org/10.1007/978-3-319-11662-4_24
https://doi.org/10.1007/978-3-319-11662-4_24