Zobrazeno 1 - 10
of 127
pro vyhledávání: '"Ziller, Wolfgang"'
We classify curvature homogeneous hypersurfaces in S^4 and H^4. In higher dimesnsion one only has the FKM examples and an isolate one by Tsukada of a hypersurface in H^5. Besides some simple examples, we show that there exists an isolated hypersurfac
Externí odkaz:
http://arxiv.org/abs/2404.02302
Autor:
Pulemotov, Artem, Ziller, Wolfgang
We obtain a complete description of divergent Palais-Smale sequences for the prescribed Ricci curvature functional on compact homogeneous spaces. As an application, we prove the existence of saddle points on generalized Wallach spaces and several typ
Externí odkaz:
http://arxiv.org/abs/2309.08090
Autor:
Pulemotov, Artem, Ziller, Wolfgang
We study the prescribed Ricci curvature problem for homogeneous metrics. Given a (0,2)-tensor field $T$, this problem asks for solutions to the equation $\mathrm{Ric}(g)=cT$ for some constant $c$. Our approach is based on examining global properties
Externí odkaz:
http://arxiv.org/abs/2110.14129
Autor:
Verdiani, Luigi, Ziller, Wolfgang
We classify complete curvature homogeneous metrics on simply connected four dimensional manifolds which are invariant under a cohomogeneity one action. We show that they are either isometric to a symmetric space with one of its cohomogeneity one acti
Externí odkaz:
http://arxiv.org/abs/2006.11294
Publikováno v:
Differential Geometry and its Applications 78 (2021), article 101794
We study the problem of prescribing the Ricci curvature in the class of naturally reductive metrics on a compact Lie group. We derive necessary as well as sufficient conditions for the solvability of the equations and provide a series of examples.
Externí odkaz:
http://arxiv.org/abs/2001.09441
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
We study the Ricci iteration for homogeneous metrics on spheres and complex projective spaces. Such metrics can be described in terms of modifying the canonical metric on the fibers of a Hopf fibration. When the fibers of the Hopf fibration are circl
Externí odkaz:
http://arxiv.org/abs/1811.01724
Autor:
Verdiani, Luigi, Ziller, Wolfgang
In this paper we discuss the smoothness conditions for metrics on a cohomogeneity one manifold, i.e. metrics invariant under a Lie group whose generic orbits are hypersurfaces. Along these hypersurfaces one describes the metrics in terms of a collect
Externí odkaz:
http://arxiv.org/abs/1804.04680
Autor:
Verdiani, Luigi, Ziller, Wolfgang
We show that a certain family of cohomogeneity one manifolds does not admit an invariant metric of nonnegative sectional curvature, unless it admits one with positive curvature. As a consequence, the classification of nonnegatively curved cohomogenei
Externí odkaz:
http://arxiv.org/abs/1705.09032
Autor:
Florit, Luis, Ziller, Wolfgang
We classify $n$-dimensional geometric graph manifolds with nonnegative scalar curvature, and first show that if $n>3$, the universal cover splits off a codimension 3 Euclidean factor. We then proceed with the classification of the 3-dimensional case
Externí odkaz:
http://arxiv.org/abs/1705.04208