Zobrazeno 1 - 10
of 56
pro vyhledávání: '"Ziawasch Abedjan"'
Publikováno v:
Datenbank-Spektrum. 22:121-130
Data cleaning is widely acknowledged as an important yet tedious task when dealing with large amounts of data. Thus, there is always a cost-benefit trade-off to consider. In particular, it is important to assess this trade-off when not every data poi
Autor:
Ziawasch Abedjan
Publikováno v:
it - Information Technology. 64:67-70
Data is being produced at an intractable pace. At the same time, there is an insatiable interest in using such data for use cases that span all imaginable domains, including health, climate, business, and gaming. Beyond the novel socio-technical chal
Publikováno v:
2022 ACM Conference on Fairness, Accountability, and Transparency.
Publikováno v:
Companion Proceedings of the Web Conference 2022.
Autor:
Mohammad Mahdavi, Ziawasch Abedjan
Publikováno v:
Proceedings of the VLDB Endowment. 13:1948-1961
Traditional error correction solutions leverage handmaid rules or master data to find the correct values. Both are often amiss in real-world scenarios. Therefore, it is desirable to additionally learn corrections from a limited number of example repa
Autor:
Larysa Visengeriyeva, Ziawasch Abedjan
Publikováno v:
Journal of Data and Information Quality. 12:1-30
Real-world datasets often suffer from various data quality problems. Several data cleaning solutions have been proposed so far. However, data cleaning remains a manual and iterative task that requires domain and technical expertise. Exploiting metada
Autor:
Mahdi Esmailoghli, Hagen Anuth, Mohammad Mahdavi, Ziawasch Abedjan, Felix Neutatz, Binger Chen
Publikováno v:
Informatik Spektrum. 43:129-136
ZusammenfassungDie Nachfrage nach Data Scientists in den verschiedensten Bereichen der Industrie, Gesellschaft und Forschung stellt Universitäten vor die Frage, in welcher Form eine Data-Science-Ausbildung ermöglicht werden soll. Neben dem traditio
Autor:
Ziawasch Abedjan
Publikováno v:
Encyclopedia of Big Data Technologies ISBN: 9783319639628
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::8f7a7920492084257d49c72b8e958af4
https://doi.org/10.1007/978-3-319-63962-8_8-2
https://doi.org/10.1007/978-3-319-63962-8_8-2
Autor:
Binger Chen, Ziawasch Abedjan
Publikováno v:
2021 36th IEEE/ACM International Conference on Automated Software Engineering (ASE).
Publikováno v:
Jorge Arnulfo Quiané Ruiz
A core operation in data discovery is to find joinable tables for a given table. Real-world tables include both unary and n-ary join keys. However, existing table discovery systems are optimized for unary joins and are ineffective and slow in the exi
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::d049a022000af8ab319b35cc17828e9d
http://arxiv.org/abs/2110.00318
http://arxiv.org/abs/2110.00318