Zobrazeno 1 - 10
of 82
pro vyhledávání: '"Zhuo, Ciqiang"'
Autor:
Sun, Qi, Zhuo, Ciqiang
In this article, we introduce inhomogeneous variable Triebel-Lizorkin spaces, $F_{p(\cdot),q(\cdot)}^{\alpha(\cdot),H}(\mathbb R^n)$, associated with the Hermite operator $H:=-\Delta+|x|^2$, where $\Delta$ is the Laplace operator on $\mathbb R^n$, an
Externí odkaz:
http://arxiv.org/abs/2401.01768
Let $\Omega$ be a bounded John domain in $\mathbb R^n$ with $n\ge 2$, and let $\mathcal{H}_{\infty }^{\delta}$ denote the Hausdorff content of dimension $\delta\in (0,n]$. In this article, the authors prove the Poincar\'e and the Poincar\'e--Sobolev
Externí odkaz:
http://arxiv.org/abs/2311.15224
In this paper, several versions of the Kolmogorov-Riesz compactness theorem in weighted Lebesgue spaces with matrix weights are obtained. In particular, when the matrix weight $W$ is in the known $A_p$ class, a characterization of totally bounded sub
Externí odkaz:
http://arxiv.org/abs/2102.01354
In this article the authors study complex interpolation of Sobolev-Morrey spaces and their generalizations, Lizorkin-Triebel-Morrey spaces. Both scales are considered on bounded domains. Under certain conditions on the parameters the outcome belongs
Externí odkaz:
http://arxiv.org/abs/2008.00256
Autor:
Zhuo, Ciqiang, Yang, Dachun
Let $p(\cdot):\ \mathbb R^n\to(0,1]$ be a variable exponent function satisfying the globally log-H\"older continuous condition and $L$ a one to one operator of type $\omega$ in $L^2({\mathbb R}^n)$, with $\omega\in[0,\,\pi/2)$, which has a bounded ho
Externí odkaz:
http://arxiv.org/abs/1805.07778
Let $p(\cdot):\ \mathbb R^n\to(0,\infty)$ be a variable exponent function satisfying the globally log-H\"older continuous condition. In this article, the authors first obtain a decomposition for any distribution of the variable weak Hardy space into
Externí odkaz:
http://arxiv.org/abs/1703.05527
Publikováno v:
J. Funct. Anal. 271 (2016), 2822-2887
Let $p(\cdot):\ \mathbb R^n\to(0,\infty)$ be a variable exponent function satisfying the globally log-H\"older continuous condition. In this article, the authors first introduce the variable weak Hardy space on $\mathbb R^n$, $W\!H^{p(\cdot)}(\mathbb
Externí odkaz:
http://arxiv.org/abs/1603.01781
Autor:
Zhuo, Ciqiang, Yang, Dachun
Let $p(\cdot):\ \mathbb R^n\to(0,1]$ be a variable exponent function satisfying the globally $\log$-H\"older continuous condition and $L$ a non-negative self-adjoint operator on $L^2(\mathbb R^n)$ whose heat kernels satisfying the Gaussian upper boun
Externí odkaz:
http://arxiv.org/abs/1601.07615
Let $L$ be a one-to-one operator of type $\omega$ in $L^2(\mathbb{R}^n)$, with $\omega\in[0,\,\pi/2)$, which has a bounded holomorphic functional calculus and satisfies the Davies-Gaffney estimates. Let $p(\cdot):\ \mathbb{R}^n\to(0,\,1]$ be a variab
Externí odkaz:
http://arxiv.org/abs/1601.06358
Autor:
Yang, Dachun, Zhuo, Ciqiang
Let $L$ be a linear operator on $L^2(\mathbb R^n)$ generating an analytic semigroup $\{e^{-tL}\}_{t\ge0}$ with kernels having pointwise upper bounds and $p(\cdot):\ \mathbb R^n\to(0,1]$ be a variable exponent function satisfying the globally log-H\"o
Externí odkaz:
http://arxiv.org/abs/1512.05950