Zobrazeno 1 - 10
of 41
pro vyhledávání: '"Zhu, Muzhi"'
Recently, there have been explorations of generalist segmentation models that can effectively tackle a variety of image segmentation tasks within a unified in-context learning framework. However, these methods still struggle with task ambiguity in in
Externí odkaz:
http://arxiv.org/abs/2410.04842
Autor:
Zhu, Muzhi, Liu, Yang, Luo, Zekai, Jing, Chenchen, Chen, Hao, Xu, Guangkai, Wang, Xinlong, Shen, Chunhua
The Diffusion Model has not only garnered noteworthy achievements in the realm of image generation but has also demonstrated its potential as an effective pretraining method utilizing unlabeled data. Drawing from the extensive potential unveiled by t
Externí odkaz:
http://arxiv.org/abs/2410.02369
Recently, large-scale language-image generative models have gained widespread attention and many works have utilized generated data from these models to further enhance the performance of perception tasks. However, not all generated data can positive
Externí odkaz:
http://arxiv.org/abs/2406.02435
Instance segmentation is data-hungry, and as model capacity increases, data scale becomes crucial for improving the accuracy. Most instance segmentation datasets today require costly manual annotation, limiting their data scale. Models trained on suc
Externí odkaz:
http://arxiv.org/abs/2405.10185
Innovations like protein diffusion have enabled significant progress in de novo protein design, which is a vital topic in life science. These methods typically depend on protein structure encoders to model residue backbone frames, where atoms do not
Externí odkaz:
http://arxiv.org/abs/2310.11802
Autor:
Zhu, Muzhi, Li, Hengtao, Chen, Hao, Fan, Chengxiang, Mao, Weian, Jing, Chenchen, Liu, Yifan, Shen, Chunhua
Current closed-set instance segmentation models rely on pre-defined class labels for each mask during training and evaluation, largely limiting their ability to detect novel objects. Open-world instance segmentation (OWIS) models address this challen
Externí odkaz:
http://arxiv.org/abs/2308.06531
Powered by large-scale pre-training, vision foundation models exhibit significant potential in open-world image understanding. However, unlike large language models that excel at directly tackling various language tasks, vision foundation models requ
Externí odkaz:
http://arxiv.org/abs/2305.13310
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
Assembly Automation, 2019, Vol. 40, Issue 2, pp. 265-271.
Externí odkaz:
http://www.emeraldinsight.com/doi/10.1108/AA-12-2018-0270
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.