Zobrazeno 1 - 10
of 345
pro vyhledávání: '"Zhu, Meijun"'
Autor:
Zhu, Meijun
We introduce the concept of negative coefficients in various number-based systems, with a focus on decimal and binary systems. We demonstrate that every binary number can be transformed into a sparse form, significantly enhancing computational speed
Externí odkaz:
http://arxiv.org/abs/2410.10620
Autor:
Wang, Lei, Zhu, Meijun
This is the first part of our research on certain sharp Hardy-Sobolev inequalities and the related elliptic equations. In this part we shall establish some sharp weighted Hardy-Sobolev inequalities whose weights are distance functions to the boundary
Externí odkaz:
http://arxiv.org/abs/2206.14540
Autor:
Wang, Lei, Zhu, Meijun
Publikováno v:
In Journal of Mathematical Analysis and Applications 15 February 2024 530(2)
Publikováno v:
In International Journal of Biological Macromolecules 31 December 2023 253 Part 2
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
In this paper we classify all positive extremal functions to a sharp weighted Sobolev inequality on the upper half space, which involves divergent operators with degeneracy on the boundary. As an application of the results, we can derive a sharp Sobo
Externí odkaz:
http://arxiv.org/abs/1910.13924
In this paper we shall classify all positive solutions of $ \Delta u =a u^p$ on the upper half space $ H =\Bbb{R}_+^n$ with nonlinear boundary condition $ {\partial u}/{\partial t}= - b u^q $ on $\partial H$ for both positive parameters $a, \ b>0$. W
Externí odkaz:
http://arxiv.org/abs/1906.03739
This is the continuation of our previous work [5], where we introduced and studied some nonlinear integral equations on bounded domains that are related to the sharp Hardy-Littlewood-Sobolev inequality. In this paper, we introduce some nonlinear inte
Externí odkaz:
http://arxiv.org/abs/1904.03878
Autor:
Wang, Lei, Zhu, Meijun
In this paper we shall establish some Liouville theorems for solutions bounded from below to certain linear elliptic equations on the upper half space. In particular, we show that for $a \in (0, 1)$ constants are the only $C^1$ up to the boundary pos
Externí odkaz:
http://arxiv.org/abs/1902.05187
Autor:
Dou, Jingbo, Zhu, Meijun
Publikováno v:
In Advances in Mathematics 6 August 2022 404 Part A