Zobrazeno 1 - 10
of 112
pro vyhledávání: '"Zhou, Qiannan"'
Publikováno v:
In Discrete Applied Mathematics 15 November 2024 357:399-412
Publikováno v:
In Energy and Built Environment February 2024
Autor:
Gao, Jie, Zhou, Qiannan, Xu, Huizhong, Liu, Weifeng, Xu, Xiaojun, Zhuang, Ziqiushui, Zhou, Xin, Li, Wei
Publikováno v:
In Electrochimica Acta 10 November 2023 468
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Sun, Lei, Xu, Huizhong, Cheng, Zhaoyang, Zheng, Dehua, Zhou, Qiannan, Yang, Shikuan, Lin, Jianjian
Publikováno v:
In Chemical Engineering Journal 1 September 2022 443
Autor:
Guo, Yu, Guo, Rongbo, Shi, Xiaoshuang, Lian, Shujuan, Zhou, Qiannan, Chen, Ying, Liu, Weifeng, Li, Wei
Publikováno v:
In International Journal of Biological Macromolecules 1 June 2022 209 Part A:1169-1178
Autor:
Xu, Huizhong, Sun, Lei, Li, Wei, Gao, Mengyou, Zhou, Qiannan, Li, Ping, Yang, Shikuan, Lin, Jianjian
Publikováno v:
In Chemical Engineering Journal 1 May 2022 435 Part 2
In this paper, we present a spectral sufficient condition for a graph to be Hamilton-connected in terms of signless Laplacian spectral radius with large minimum degree.
Comment: 14 pages
Comment: 14 pages
Externí odkaz:
http://arxiv.org/abs/1711.11257
Let $\Phi=(G, \varphi)$ be a complex unit gain graph (or $\mathbb{T}$-gain graph) and $A(\Phi)$ be its adjacency matrix, where $G$ is called the underlying graph of $\Phi$. The rank of $\Phi$, denoted by $r(\Phi)$, is the rank of $A(\Phi)$. Denote by
Externí odkaz:
http://arxiv.org/abs/1711.11448
Sufficient conditions for Hamilton-connected graphs in terms of (signless Laplacian) spectral radius
In this paper, we present some spectral sufficient conditions for a graph to be Hamilton-connected in terms of the spectral radius or signless Laplacian spectral radius of the graph. Our results improve some previous work.
Comment: 18 pages, 2 f
Comment: 18 pages, 2 f
Externí odkaz:
http://arxiv.org/abs/1711.03019