Zobrazeno 1 - 10
of 107
pro vyhledávání: '"Zhou, Qian‐Qian"'
Autor:
Zhao, Yuan, Hu, Heng-Jie, Zhou, Qian-Qian, Qiu, Zhang-Cai, Xue, Li, Xu, Si-Liu, Zhou, Qin, Malomed, Boris A.
Publikováno v:
Scientific Reports 13(2023) 18079
We present numerical results for three-dimensional (3D) solitons with symmetries of the semi-vortex (SV) and mixed-mode (MM) types, which can be created in spinor Bose-Einstein condensates of Rydberg atoms under the action of the spin-orbit coupling
Externí odkaz:
http://arxiv.org/abs/2310.07961
The long-standing Gaussian product inequality (GPI) conjecture states that, for any centered $\mathbb{R}^n$-valued Gaussian random vector $(X_1, \dots, X_n)$ and any positive reals $\alpha_1, \dots, \alpha_n$, ${\bf E}[\prod_{j=1}^{n}|X_j|^{\alpha_j}
Externí odkaz:
http://arxiv.org/abs/2308.13740
Let $B(n,p)$ denote a binomial random variable with parameters $n$ and $p$. Chv\'{a}tal's theorem says that for any fixed $n\geq 2$, as $m$ ranges over $\{0,\ldots,n\}$, the probability $q_m:=P(B(n,m/n)\leq m)$ is the smallest when $m$ is closest to
Externí odkaz:
http://arxiv.org/abs/2308.07678
Let $B(n,p)$ denote a binomial random variable with parameters $n$ and $p$. Chv\'{a}tal's theorem says that for any fixed $n\geq 2$, as $m$ ranges over $\{0,\ldots,n\}$, the probability $q_m:=P(B(n,m/n)\leq m)$ is the smallest when $m$ is closest to
Externí odkaz:
http://arxiv.org/abs/2305.02114
The Gaussian product inequality (GPI) conjecture is one of the most famous inequalities associated with Gaussian distributions and has attracted a lot of concerns. In this note, we investigate the quantitative versions of the two-dimensional Gaussian
Externí odkaz:
http://arxiv.org/abs/2207.09921
Publikováno v:
In Journal of Mathematical Analysis and Applications 15 March 2024 531(2) Part 2
Autor:
Tong, Mei-Hong, Chen, Yan-Xin, Lin, Shi-Wei, Zhao, Hai-Peng, Chen, Rui, Jiang, Xia, Shi, Hao-Yan, Zhu, Mei-Ling, Zhou, Qian-Qian, Lu, Can-Zhong
Publikováno v:
In Electrochimica Acta 20 September 2023 463
Autor:
Chen, Mao-Wei, Hu, Heng-Jie, Zhu, Min, Zhou, Qian-Qian, Qiu, Zhang-Cai, Li, Bin-Bin, Zhao, Yuan, Xue, Li, Xu, Si-Liu
Publikováno v:
In Results in Physics May 2023 48
Autor:
Hu, Ze-Chun, Zhou, Qian-Qian
Publikováno v:
Chinese Journal of Applied Probability and Statistics, 34(6), 577-586 (2018)
In this note we discuss uniform integrability of random variables. In a probability space, we introduce two new notions on uniform integrability of random variables, and prove that they are equivalent to the classic one. In a sublinear expectation sp
Externí odkaz:
http://arxiv.org/abs/1705.08333
Autor:
Hu, Ze-Chun, Zhou, Qian-Qian
In this note, we will survey the existing convergence results for random variables under sublinear expectations, and prove some new results. Concretely, under the assumption that the sublinear expectation has the monotone continuity property, we will
Externí odkaz:
http://arxiv.org/abs/1607.07555