Zobrazeno 1 - 10
of 250
pro vyhledávání: '"Zhou, Panyue"'
Autor:
Liu, Yu-Zhe, Zhou, Panyue
For any arbitrary string almost gentle algebra, we consider specific subsets of its quiver's arrow set, denoted by $\mathcal{R}$. For each such $\mathcal{R}$, we introduce the finitely generated module $M_{\mathcal{R}}$ and define its associated $\ma
Externí odkaz:
http://arxiv.org/abs/2411.03690
Autor:
Wu, Weicai, Zhou, Panyue
Publikováno v:
INT.J. ALGEBR COMPUT,32(7):1403-1409,2022
In this article, we show that conjugacy classes of classical Weyl groups $W(B_{n})$ and $W(D_{n})$ are of $\textit{type D}$. Consequently, we obtain that Nichols algebras of irreducible Yetter-Drinfeld modules over the classical Weyl groups $\mathbb
Externí odkaz:
http://arxiv.org/abs/2410.07743
Let $(\mathscr{C},\mathbb{E},\mathfrak{s})$ be an $n$-exangulated category with enough projectives and enough injectives, and $\mathscr{X}$ be a cluster-tilting subcategory of $\mathscr{C}$. Liu and Zhou have shown that the quotient category $\mathsc
Externí odkaz:
http://arxiv.org/abs/2410.01834
Extriangulated categories, introduced by Nakaoka and Palu, serve as a simultaneous generalization of exact and triangulated categories. In this paper, we first introduce the concept of admissible weak factorization systems and establish a bijection b
Externí odkaz:
http://arxiv.org/abs/2408.13548
Let $\mathcal{C}$ be a weakly idempotent complete extriangulated category. In contrast with the Hovey correspondence of admissible model structures on weakly idempotent complete exact categories from two complete cotorsion pairs, we give a constructi
Externí odkaz:
http://arxiv.org/abs/2406.14031
We explore the assignment of norms to $\Lambda$-modules over a finite-dimensional algebra $\Lambda$, resulting in the establishment of normed $\Lambda$-modules. Our primary contribution lies in constructing a new category $\mathscr{N}\!\!or^p$ relate
Externí odkaz:
http://arxiv.org/abs/2405.02777
Let $\mathcal C$ be a Krull-Schmidt triangulated category with shift functor $[1]$ and $\mathcal R$ be a rigid subcategory of $\mathcal C$. We are concerned with the mutation of two-term weak $\mathcal R[1]$-cluster tilting subcategories. We show tha
Externí odkaz:
http://arxiv.org/abs/2405.01152
Autor:
Chang, Huimin, Zhou, Panyue
In this article, we define the notion of $n$-cotorsion pairs in triangulated categories, which is a generalization of the classical cotorsion pairs. We prove that any mutation of an $n$-cotorsion pair is again an $n$-cotorsion pair. When $n=1$, this
Externí odkaz:
http://arxiv.org/abs/2404.18336
Herschend-Liu-Nakaoka introduced the concept of $n$-exangulated categories as higher-dimensional analogues of extriangulated categories defined by Nakaoka-Palu. The class of $n$-exangulated categories contains $n$-exact categories and $(n+2)$-angulat
Externí odkaz:
http://arxiv.org/abs/2401.00777
Autor:
Ma, Xin, Zhou, Panyue
Let $(\mathcal A, \mathcal B, \mathcal C)$ be a recollement of extriangulated categories. In this paper, we provide bounds on the coresolution dimensions of the subcategories involved in $\mathcal A$, $\mathcal B$ and $\mathcal C$. We show that a her
Externí odkaz:
http://arxiv.org/abs/2310.11172