Zobrazeno 1 - 10
of 138
pro vyhledávání: '"Zhong, Chunping"'
Autor:
Zhong, Chunping
Our goal of this paper is to give a complete characterization of all holomorphic invariant strongly pseudoconvex complex Finsler metrics on the classical domains and establish a corresponding Schwarz lemma for holomorphic maps with respect to these i
Externí odkaz:
http://arxiv.org/abs/2311.08729
In this paper, we obtain a Schwarz lemma for holomorphic mappings from the unit polydisc $P_m$ into the unit polydisc $P_n$, here $P_m$ and $P_n$ are endowed with $\mbox{Aut}(P_m)$-invariant K\"ahelr-Berwald metric $F_{t,k}$ and $\mbox{Aut}(P_n)$-inv
Externí odkaz:
http://arxiv.org/abs/2301.06102
Autor:
Ge, Xiaoshu, Zhong, Chunping
In this paper, a class of holomorphic invariant metrics is introduced on the irreducible classical domains of type I-IV, which are strongly pseudoconvex complex Finsler metrics in the strict sense of M. Abate and G. Patrizio[2]. These metrics are of
Externí odkaz:
http://arxiv.org/abs/2211.15540
Autor:
Zhong, Chunping
Let $B_n$ and $P_n$ be the unit ball and the unit polydisk in $\mathbb{C}^n$ with $n\geq 2$ respectively. Denote $\mbox{Aut}(B_n)$ and $\mbox{Aut}(P_n)$ the holomorphic automorphism group of $B_n$ and $P_n$ respectively. In this paper, we prove that
Externí odkaz:
http://arxiv.org/abs/2110.12436
Publikováno v:
In Energy Policy July 2024 190
Publikováno v:
In Differential Geometry and its Applications June 2024 94
Autor:
Nie, Jun, Zhong, Chunping
In this paper, we first establish several theorems about the estimation of distance function on real and strongly convex complex Finsler manifolds and then obtain a Schwarz lemma from a strongly convex weakly K\"ahler-Finsler manifold into a strongly
Externí odkaz:
http://arxiv.org/abs/2105.08284
Autor:
Nie, Jun, Zhong, Chunping
Suppose that $M$ is a K\"ahler manifold with a pole such that its holomorphic sectional curvature is bounded from below by a constant and its radial sectional curvature is also bounded from below. Suppose that $N$ is a strongly pseudoconvex complex F
Externí odkaz:
http://arxiv.org/abs/2105.08720
In this paper, we obtain a necessary and sufficient condition for a $U(n)$-invariant complex Finsler metric $F$ on domains in $\mathbb{C}^n$ to be strongly convex, which also makes it possible to investigate relationship between real and complex Fins
Externí odkaz:
http://arxiv.org/abs/2005.10022
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.