Zobrazeno 1 - 10
of 228
pro vyhledávání: '"Zheng, Jiqiang"'
In this article, we consider an energy-critical complex Ginzburg-Landau equation in the exterior of a smooth compact strictly convex obstacle. We prove the global well-posedness of energy-critical complex Ginzburg-Landau equation in an exterior domai
Externí odkaz:
http://arxiv.org/abs/2410.04381
In this article, we study the scattering theory for the two dimensional defocusing quintic nonlinear Schr\"odinger equation(NLS) with partial harmonic oscillator which is given by \begin{align}\label{NLS-abstract} \begin{cases}\tag{PHNLS} i\partial_t
Externí odkaz:
http://arxiv.org/abs/2409.09789
In this article, we investigate the global well-posedness for cubic nonlinear Schr\"{o}dinger equation(NLS) $ i\partial_tu+\Delta_gu=|u|^2u$ posed on the three dimensional compact manifolds $(M,g)$ with initial data $u_0\in H^s(M)$ where $s>\frac{\sq
Externí odkaz:
http://arxiv.org/abs/2407.03908
We consider the long-time dynamics of focusing energy-critical Schr\"odinger equation perturbed by the $\dot{H}^\frac{1}{2}$-critical nonlinearity and with inverse-square potential(CNLS$_a$) in dimensions $d\in\{3,4,5\}$ \begin{equation}\label{NLS-ab
Externí odkaz:
http://arxiv.org/abs/2406.09435
Autor:
Cheng, Xing, Zheng, Jiqiang
In this article, we consider the nonlinear Schr\"odinger equation on the cylinder $\mathbb{R}^d\times \mathbb{T}$. In the long range case, we show there is no linear scattering state of the nonlinear Schr\"odinger equation on $\mathbb{R}^d \times \ma
Externí odkaz:
http://arxiv.org/abs/2405.09740
We study local-in-time and global-in-time bilinear Strichartz estimates for the Schr\"odinger equation on waveguides. As applications, we apply those estimates to study global well-posedness of nonlinear Schr\"odinger equations on these waveguides.
Externí odkaz:
http://arxiv.org/abs/2402.02916
Autor:
Li, Zhuoran, Zheng, Jiqiang
In this paper, we study the restriction problem for one class of hypersurfaces with vanishing curvature in $\mathbb{R}^n$ with $n$ being odd. We obtain an $L^2-L^p$ restriction estimate, which is optimal except at the endpoint. Furthermore, we establ
Externí odkaz:
http://arxiv.org/abs/2312.08633
We consider the nonlinear Schr\"odinger equation with focusing quintic and defocusing cubic nonlinearity in three space dimensions: \[ (i\partial_t+\Delta)u = |u|^2 u - |u|^4 u. \] In [18, 23], the authors classified the dynamics of solutions under t
Externí odkaz:
http://arxiv.org/abs/2305.13531
In this paper, we study the $2$D cubic nonlinear Schr\"odinger equation (NLS) with the partial harmonic potential. First, we prove the local well-posedness in Bourgain spaces by establishing a key bilinear estimate associated with the partial harmoni
Externí odkaz:
http://arxiv.org/abs/2304.02995
In this paper, we prove Strichartz estimates for many body Schr\"odinger equations in the periodic setting, specifically on tori $\mathbb{T}^d$, where $d\geq 3$. The results hold for both rational and irrational tori, and for small interacting potent
Externí odkaz:
http://arxiv.org/abs/2304.00882