Zobrazeno 1 - 10
of 100
pro vyhledávání: '"Zheng, Alice"'
Autor:
Zhou, Yuan, Zhang, Peng, Song, Mengya, Zheng, Alice, Lu, Yiwen, Liu, Zhiheng, Chen, Yong, Xi, Zhaohan
Large language models (LLMs) have demonstrated remarkable progress in healthcare. However, a significant gap remains regarding LLMs' professionalism in domain-specific clinical practices, limiting their application in real-world diagnostics. In this
Externí odkaz:
http://arxiv.org/abs/2410.02026
In many quantum tasks, there is an unknown quantum object that one wishes to learn. An online strategy for this task involves adaptively refining a hypothesis to reproduce such an object or its measurement statistics. A common evaluation metric for s
Externí odkaz:
http://arxiv.org/abs/2406.04245
A feature selection algorithm should ideally satisfy four conditions: reliably extract relevant features; be able to identify non-linear feature interactions; scale linearly with the number of features and dimensions; allow the incorporation of known
Externí odkaz:
http://arxiv.org/abs/1901.04055
As machine learning transitions increasingly towards real world applications controlling the test-time cost of algorithms becomes more and more crucial. Recent work, such as the Greedy Miser and Speedboost, incorporate test-time budget constraints in
Externí odkaz:
http://arxiv.org/abs/1901.04065
Autor:
Zheng, Alice, Schmid, Susanne
Publikováno v:
In Neuroscience and Biobehavioral Reviews May 2023 148
Autor:
Zheng, Alice, Scott, Kaela E., Schormans, Ashley L., Mann, Rajkamalpreet, Allman, Brian L., Schmid, Susanne
Publikováno v:
In Neuroscience 1 March 2023 513:96-110
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
We consider the problem of diagnosing faults in a system represented by a Bayesian network, where diagnosis corresponds to recovering the most likely state of unobserved nodes given the outcomes of tests (observed nodes). Finding an optimal subset of
Externí odkaz:
http://arxiv.org/abs/1207.1418
Publikováno v:
Foundations and Trends in Machine Learning, 2(2):1-117, 2009
Networks are ubiquitous in science and have become a focal point for discussion in everyday life. Formal statistical models for the analysis of network data have emerged as a major topic of interest in diverse areas of study, and most of these involv
Externí odkaz:
http://arxiv.org/abs/0912.5410