Zobrazeno 1 - 10
of 213
pro vyhledávání: '"Zhang Zhenqiu"'
Publikováno v:
Advanced Nonlinear Studies, Vol 24, Iss 2, Pp 279-302 (2024)
In this paper, we consider the general dual fractional parabolic problem ∂tαu(x,t)+Lu(x,t)=f(t,u(x,t))inRn×R. ${\partial }_{t}^{\alpha }u\left(x,t\right)+\mathcal{L}u\left(x,t\right)=f\left(t,u\left(x,t\right)\right) \text{in} {\mathbb{R}}^{n}{\t
Externí odkaz:
https://doaj.org/article/3b5df280e4c94c81b89fbec5768bb4e0
We establish a class of pointwise estimates for weak solutions to mixed local and nonlocal parabolic equations involving measure data and merely measurable coefficients via caloric Riesz potentials. Such estimates effectively bound the sizes and osci
Externí odkaz:
http://arxiv.org/abs/2407.07600
In this paper,we consider the solutions of the elliptic double obstacle problems with Orlicz growth involving measure data. Some pointwise estimates for the approximable solutions to these problems are obtained in terms of fractional maximal operator
Externí odkaz:
http://arxiv.org/abs/2406.11542
We study the local H\"{o}lder regularity of weak solutions to the fully fractional parabolic equations involving spatial fractional diffusion and fractional time derivatives of the Marchaud type. It is worth noting that we do not impose boundedness a
Externí odkaz:
http://arxiv.org/abs/2406.08795
In this paper, we consider the solutions to the non-homogeneous double obstacle problems with Orlicz growth involving measure data. After establishing the existence of the solutions to this problem in the Orlicz-Sobolev space, we derive a pointwise g
Externí odkaz:
http://arxiv.org/abs/2405.19621
In this paper, we establish a Liouville type theorem for the homogeneous dual fractional parabolic equation \begin{equation} \partial^\alpha_t u(x,t)+(-\Delta)^s u(x,t) = 0\ \ \mbox{in}\ \ \mathbb{R}^n\times\mathbb{R} . \end{equation} where $0<\alpha
Externí odkaz:
http://arxiv.org/abs/2405.05577
In this paper, we first study the dual fractional parabolic equation \begin{equation*} \partial^\alpha_t u(x,t)+(-\Delta)^s u(x,t) = f(u(x,t))\ \ \mbox{in}\ \ B_1(0)\times\R , \end{equation*} subject to the vanishing exterior condition. We show that
Externí odkaz:
http://arxiv.org/abs/2309.03429
This paper has two primary objectives. The first one is to demonstrate that the solutions of master equation \begin{equation*} (\partial_t-\Delta)^s u(x,t) =f(u(x, t)), \,\,(x, t)\in B_1(0)\times \mathbb{R}, \end{equation*} subject to the vanishing e
Externí odkaz:
http://arxiv.org/abs/2306.11554
Autor:
Cui, Yingfang, Liang, Yijia, Zhao, Kan, Wang, Yongjin, Zhang, Zhenqiu, Wang, Quan, Wang, Zhenjun, Chen, Jianshun, Cheng, Hai, Edwards, R. Lawrence
Publikováno v:
In Palaeogeography, Palaeoclimatology, Palaeoecology 15 November 2024 654
Autor:
Wanigasekara, R. W. W. M. U. P.1,2 (AUTHOR) udana95@yahoo.com, Zhang, Zhenqiu1 (AUTHOR) zzq@scsio.ac.cn, Wang, Weiqiang1 (AUTHOR) weiqiang.wang@scsio.ac.cn, Luo, Yao1 (AUTHOR) yaoluo@scsio.ac.cn, Pan, Gang1 (AUTHOR) gpan@scsio.ac.cn
Publikováno v:
Remote Sensing. Jul2024, Vol. 16 Issue 13, p2468. 17p.