Zobrazeno 1 - 10
of 17
pro vyhledávání: '"Zhang Situo"'
Autor:
Ma, Da, Chen, Lu, Zhang, Situo, Miao, Yuxun, Zhu, Su, Chen, Zhi, Xu, Hongshen, Li, Hanqi, Fan, Shuai, Pan, Lei, Yu, Kai
The increasing context window size in Large Language Models (LLMs), such as the GPT and LLaMA series, has improved their ability to tackle complex, long-text tasks, but at the cost of inference efficiency, particularly regarding memory and computatio
Externí odkaz:
http://arxiv.org/abs/2412.02252
The auto-regressive architecture, like GPTs, is widely used in modern Text-to-Speech (TTS) systems. However, it incurs substantial inference time, particularly due to the challenges in the next-token prediction posed by lengthy sequences of speech to
Externí odkaz:
http://arxiv.org/abs/2410.21951
Autor:
Zhu, Zichen, Tang, Hao, Li, Yansi, Lan, Kunyao, Jiang, Yixuan, Zhou, Hao, Wang, Yixiao, Zhang, Situo, Sun, Liangtai, Chen, Lu, Yu, Kai
Current mobile assistants are limited by dependence on system APIs or struggle with complex user instructions and diverse interfaces due to restricted comprehension and decision-making abilities. To address these challenges, we propose MobA, a novel
Externí odkaz:
http://arxiv.org/abs/2410.13757
Large Language Models (LLMs) often generate erroneous outputs, known as hallucinations, due to their limitations in discerning questions beyond their knowledge scope. While addressing hallucination has been a focal point in research, previous efforts
Externí odkaz:
http://arxiv.org/abs/2403.18349
Autor:
Zhu, Zichen, Xu, Yang, Chen, Lu, Yang, Jingkai, Ma, Yichuan, Sun, Yiming, Wen, Hailin, Liu, Jiaqi, Cai, Jinyu, Ma, Yingzi, Zhang, Situo, Zhao, Zihan, Sun, Liangtai, Yu, Kai
Rapid progress in multimodal large language models (MLLMs) highlights the need to introduce challenging yet realistic benchmarks to the academic community, while existing benchmarks primarily focus on understanding simple natural images and short con
Externí odkaz:
http://arxiv.org/abs/2402.03173
Inspired by the insights in cognitive science with respect to human memory and reasoning mechanism, a novel evolvable LLM-based (Large Language Model) agent framework is proposed as REMEMBERER. By equipping the LLM with a long-term experience memory,
Externí odkaz:
http://arxiv.org/abs/2306.07929
Autor:
Zhang, Danyang, Shen, Zhennan, Xie, Rui, Zhang, Situo, Xie, Tianbao, Zhao, Zihan, Chen, Siyuan, Chen, Lu, Xu, Hongshen, Cao, Ruisheng, Yu, Kai
The Graphical User Interface (GUI) is pivotal for human interaction with the digital world, enabling efficient device control and the completion of complex tasks. Recent progress in Large Language Models (LLMs) and Vision Language Models (VLMs) offer
Externí odkaz:
http://arxiv.org/abs/2305.08144
Publikováno v:
In Measurement: Sensors April 2024 32
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Inspired by the insights in cognitive science with respect to human memory and reasoning mechanism, a novel evolvable LLM-based (Large Language Model) agent framework is proposed as REMEMBERER. By equipping the LLM with a long-term experience memory,
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::f910b0d7c35f455b284337f565cdb0c1