Zobrazeno 1 - 10
of 1 732
pro vyhledávání: '"Zhang Guangyi"'
Recent advances in deep learning-based joint source-channel coding (DJSCC) have shown promise for end-to-end semantic image transmission. However, most existing schemes primarily focus on optimizing pixel-wise metrics, which often fail to align with
Externí odkaz:
http://arxiv.org/abs/2409.02597
In this paper, we introduce an innovative hierarchical joint source-channel coding (HJSCC) framework for image transmission, utilizing a hierarchical variational autoencoder (VAE). Our approach leverages a combination of bottom-up and top-down paths
Externí odkaz:
http://arxiv.org/abs/2408.16340
Autor:
BESIII Collaboration, Ablikim, M., Achasov, M. N., Adlarson, P., Ahmed, S., Albrecht, M., Aliberti, R., Amoroso, A., An, M. R., An, Q., Bai, X. H., Bai, Y., Bakina, O., Ferroli, R. Baldini, Balossino, I., Ban, Y., Begzsuren, K., Berger, N., Bertani, M., Bettoni, D., Bianchi, F., Bloms, J., Bortone, A., Boyko, I., Briere, R. A., Cai, H., Cai, X., Calcaterra, A., Cao, G. F., Cao, N., Cetin, S. A., Chang, J. F., Chang, W. L., Chelkov, G., Chen, D. Y., Chen, G., Chen, H. S., Chen, M. L., Chen, S. J., Chen, X. R., Chen, Y. B., Chen, Z. J, Cheng, W. S., Cibinetto, G., Cossio, F., Cui, X. F., Dai, H. L., Dai, X. C., Dbeyssi, A., de Boer, R. E., Dedovich, D., Deng, Z. Y., Denig, A., Denysenko, I., Destefanis, M., De Mori, F., Ding, Y., Dong, C., Dong, J., Dong, L. Y., Dong, M. Y., Dong, X., Du, S. X., Fan, Y. L., Fang, J., Fang, S. S., Fang, Y., Farinelli, R., Fava, L., Feldbauer, F., Felici, G., Feng, C. Q., Feng, J. H., Fritsch, M., Fu, C. D., Gao, Y., Gao, Y. G., Garzia, I., Ge, P. T., Geng, C., Gersabeck, E. M., Gilman, A, Goetzen, K., Gong, L., Gong, W. X., Gradl, W., Greco, M., Gu, L. M., Gu, M. H., Gu, S., Gu, Y. T., Guan, C. Y, Guo, A. Q., Guo, L. B., Guo, R. P., Guo, Y. P., Guskov, A., Han, T. T., Han, W. Y., Hao, X. Q., Harris, F. A., Hüsken, N, He, K. L., Heinsius, F. H., Heinz, C. H., Held, T., Heng, Y. K., Herold, C., Himmelreich, M., Holtmann, T., Hou, Y. R., Hou, Z. L., Hu, H. M., Hu, J. F., Hu, T., Hu, Y., Huang, G. S., Huang, L. Q., Huang, X. T., Huang, Y. P., Huang, Z., Hussain, T., Andersson, W. Ikegami, Imoehl, W., Irshad, M., Jaeger, S., Janchiv, S., Ji, Q., Ji, Q. P., Ji, X. B., Ji, X. L., Ji, Y. Y., Jiang, H. B., Jiang, X. S., Jiao, J. B., Jiao, Z., Jin, S., Jin, Y., Johansson, T., Kalantar-Nayestanaki, N., Kang, X. S., Kappert, R., Kavatsyuk, M., Ke, B. C., Keshk, I. K., Khoukaz, A., Kiese, P., Kiuchi, R., Kliemt, R., Koch, L., Kolcu, O. B., Kopf, B., Kuemmel, M., Kuessner, M., Kupsc, A., Kurth, M. G., Kühn, W., Lane, J. J., Lange, J. S., Larin, P., Lavania, A., Lavezzi, L., Lei, Z. H., Leithoff, H., Lellmann, M., Lenz, T., Li, C., Li, C. H., Li, Cheng, Li, D. M., Li, F., Li, G., Li, H., Li, H. B., Li, H. J., Li, J. L., Li, J. Q., Li, J. S., Li, Ke, Li, L. K., Li, Lei, Li, P. R., Li, S. Y., Li, W. D., Li, W. G., Li, X. H., Li, X. L., Li, Xiaoyu, Li, Z. Y., Liang, H., Liang, Y. F., Liang, Y. T., Liao, G. R., Liao, L. Z., Libby, J., Lin, C. X., Liu, B. J., Liu, C. X., Liu, D., Liu, F. H., Liu, Fang, Liu, Feng, Liu, H. B., Liu, H. M., Liu, Huanhuan, Liu, Huihui, Liu, J. B., Liu, J. L., Liu, J. Y., Liu, K., Liu, K. Y., Liu, Ke, Liu, L., Liu, M. H., Liu, P. L., Liu, Q., Liu, S. B., Liu, Shuai, Liu, T., Liu, W. M., Liu, X., Liu, Y., Liu, Y. B., Liu, Z. A., Liu, Z. Q., Lou, X. C., Lu, F. X., Lu, H. J., Lu, J. D., Lu, J. G., Lu, X. L., Lu, Y., Lu, Y. P., Luo, C. L., Luo, M. X., Luo, P. W., Luo, T., Luo, X. L., Lusso, S., Lyu, X. R., Ma, F. C., Ma, H. L., Ma, L. L., Ma, M. M., Ma, Q. M., Ma, R. Q., Ma, R. T., Ma, X. X., Ma, X. Y., Maas, F. E., Maggiora, M., Maldaner, S., Malde, S., Malik, Q. A., Mangoni, A., Mao, Y. J., Mao, Z. P., Marcello, S., Meng, Z. X., Messchendorp, J. G., Mezzadri, G., Min, T. J., Mitchell, R. E., Mo, X. H., Mo, Y. J., Muchnoi, N. Yu., Muramatsu, H., Nakhoul, S., Nefedov, Y., Nerling, F., Nikolaev, I. B., Ning, Z., Nisar, S., Olsen, S. L., Ouyang, Q., Pacetti, S., Pan, X., Pan, Y., Pathak, A., Patteri, P., Pelizaeus, M., Peng, H. P., Peters, K., Pettersson, J., Ping, J. L., Ping, R. G., Poling, R., Prasad, V., Qi, H., Qi, H. R., Qi, K. H., Qi, M., Qi, T. Y., Qian, S., Qian, W. B., Qian, Z., Qiao, C. F., Qin, L. Q., Qin, X. P., Qin, X. S., Qin, Z. H., Qiu, J. F., Qu, S. Q., Rashid, K. H., Ravindran, K., Redmer, C. F., Rivetti, A., Rodin, V., Rolo, M., Rong, G., Rosner, Ch., Rump, M., Sang, H. S., Sarantsev, A., Schelhaas, Y., Schnier, C., Schoenning, K., Scodeggio, M., Shan, D. C., Shan, W., Shan, X. Y., Shangguan, J. F., Shao, M., Shen, C. P., Shen, P. X., Shen, X. Y., Shi, H. C., Shi, R. S., Shi, X., Shi, X. D, Song, J. J., Song, W. M., Song, Y. X., Sosio, S., Spataro, S., Su, K. X., Su, P. P., Sui, F. F., Sun, G. X., Sun, H. K., Sun, J. F., Sun, L., Sun, S. S., Sun, T., Sun, W. Y., Sun, X, Sun, Y. J., Sun, Y. K., Sun, Y. Z., Sun, Z. T., Tan, Y. H., Tan, Y. X., Tang, C. J., Tang, G. Y., Tang, J., Teng, J. X., Thoren, V., Tian, Y. T., Uman, I., Wang, B., Wang, C. W., Wang, D. Y., Wang, H. J., Wang, H. P., Wang, K., Wang, L. L., Wang, M., Wang, M. Z., Wang, Meng, Wang, W., Wang, W. H., Wang, W. P., Wang, X., Wang, X. F., Wang, X. L., Wang, Y., Wang, Y. D., Wang, Y. F., Wang, Y. Q., Wang, Y. Y., Wang, Z., Wang, Z. Y., Wang, Ziyi, Wang, Zongyuan, Wei, D. H., Weidenkaff, P., Weidner, F., Wen, S. P., White, D. J., Wiedner, U., Wilkinson, G., Wolke, M., Wollenberg, L., Wu, J. F., Wu, L. H., Wu, L. J., Wu, X., Wu, Z., Xia, L., Xiao, H., Xiao, S. Y., Xiao, Z. J., Xie, X. H., Xie, Y. G., Xie, Y. H., Xing, T. Y., Xu, G. F., Xu, Q. J., Xu, W., Xu, X. P., Xu, Y. C., Yan, F., Yan, L., Yan, W. B., Yan, W. C., Yan, Xu, Yang, H. J., Yang, H. X., Yang, L., Yang, S. L., Yang, Y. X., Yang, Yifan, Yang, Zhi, Ye, M., Ye, M. H., Yin, J. H., You, Z. Y., Yu, B. X., Yu, C. X., Yu, G., Yu, J. S., Yu, T., Yuan, C. Z., Yuan, L., Yuan, X. Q., Yuan, Y., Yuan, Z. Y., Yue, C. X., Yuncu, A., Zafar, A. A., Zeng, Y., Zhang, B. X., Zhang, Guangyi, Zhang, H., Zhang, H. H., Zhang, H. Y., Zhang, J. J., Zhang, J. L., Zhang, J. Q., Zhang, J. W., Zhang, J. Y., Zhang, J. Z., Zhang, Jianyu, Zhang, Jiawei, Zhang, L. M., Zhang, L. Q., Zhang, Lei, Zhang, S., Zhang, S. F., Zhang, Shulei, Zhang, X. D., Zhang, X. Y., Zhang, Y., Zhang, Y. H., Zhang, Y. T., Zhang, Yan, Zhang, Yao, Zhang, Yi, Zhang, Z. H., Zhang, Z. Y., Zhao, G., Zhao, J., Zhao, J. Y., Zhao, J. Z., Zhao, Lei, Zhao, Ling, Zhao, M. G., Zhao, Q., Zhao, S. J., Zhao, Y. B., Zhao, Y. X., Zhao, Z. G., Zhemchugov, A., Zheng, B., Zheng, J. P., Zheng, W. J., Zheng, Y., Zheng, Y. H., Zhong, B., Zhong, C., Zhou, L. P., Zhou, Q., Zhou, X., Zhou, X. K., Zhou, X. R., Zhou, X. Y., Zhu, A. N., Zhu, J., Zhu, K., Zhu, K. J., Zhu, S. H., Zhu, T. J., Zhu, W. J., Zhu, Y. C., Zhu, Z. A., Zou, B. S., Zou, J. H.
Using $(27.12\pm 0.14)\times10^8$ $\psi(3686)$ decays and data samples of $e^+e^-$ collisions with $\sqrt{s}$ from 4.130 to 4.780~GeV collected with the BESIII detector, we report the first observation of the electromagnetic Dalitz transition $h_c\to
Externí odkaz:
http://arxiv.org/abs/2407.00136
Deep learning-based joint source-channel coding (JSCC) is emerging as a potential technology to meet the demand for effective data transmission, particularly for image transmission. Nevertheless, most existing advancements only consider analog transm
Externí odkaz:
http://arxiv.org/abs/2406.10838
Recent studies in joint source-channel coding (JSCC) have fostered a fresh paradigm in end-to-end semantic communication. Despite notable performance achievements, present initiatives in building semantic communication systems primarily hinge on the
Externí odkaz:
http://arxiv.org/abs/2406.05437
Publikováno v:
Zhongguo Jianchuan Yanjiu, Vol 13, Iss 6, Pp 113-119 (2018)
[Objectives] In order to achieve safety inspections for surface attachments on hulls, dams and underwater steel structures according to the requirements of removing attachments,a new Remotely Operated Vehicle(ROV) equipped with cables for underwater
Externí odkaz:
https://doaj.org/article/82895b23a92448938b7df0f796391476
In the realm of semantic communication, the significance of encoded features can vary, while wireless channels are known to exhibit fluctuations across multiple subchannels in different domains. Consequently, critical features may traverse subchannel
Externí odkaz:
http://arxiv.org/abs/2401.14614
Recently, semantic communication has been investigated to boost the performance of end-to-end image transmission systems. However, existing semantic approaches are generally based on deep learning and belong to lossy transmission. Consequently, as th
Externí odkaz:
http://arxiv.org/abs/2308.11126
One of the most fundamental tasks in data science is to assist a user with unknown preferences in finding high-utility tuples within a large database. To accurately elicit the unknown user preferences, a widely-adopted way is by asking the user to co
Externí odkaz:
http://arxiv.org/abs/2307.02946
In existing semantic communication systems for image transmission, some images are generally reconstructed with considerably low quality. As a result, the reliable transmission of each image cannot be guaranteed, bringing significant uncertainty to s
Externí odkaz:
http://arxiv.org/abs/2306.15534