Zobrazeno 1 - 10
of 223
pro vyhledávání: '"Zhang Gaoyong"'
Publikováno v:
Advanced Nonlinear Studies, Vol 23, Iss 1, Pp 907-945 (2023)
Chord measures are newly discovered translation-invariant geometric measures of convex bodies in Rn{{\mathbb{R}}}^{n}, in addition to Aleksandrov-Fenchel-Jessen’s area measures. They are constructed from chord integrals of convex bodies and random
Externí odkaz:
https://doaj.org/article/0fc176d040524ede90edd5979b7dc829
The dual Minkowski problem for even data asks what are the necessary and sufficient conditions on an even prescribed measure on the unit sphere for it to be the $q$-th dual curvature measure of an origin-symmetric convex body in $\mathbb{R}^n$. A ful
Externí odkaz:
http://arxiv.org/abs/1703.06259
Publikováno v:
Communications on Pure & Applied Mathematics; Jul2024, Vol. 77 Issue 7, p3277-3330, 54p
Publikováno v:
In Advances in Mathematics 7 November 2019 356
A countable dense set of directions is sufficient for Steiner symmetrization, but the order of directions matters.
Comment: 6 pages
Comment: 6 pages
Externí odkaz:
http://arxiv.org/abs/1105.0400
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
A direct approach to Ball's simplex inequality is presented. This approach, which does not use the Brascamp-Lieb inequality, also gives Barthe's characterization of the simplex for Ball's inequality and extends it from discrete to arbitrary measures.
Externí odkaz:
http://arxiv.org/abs/math/0607753
Publikováno v:
In Advances in Mathematics 30 April 2018 329:85-132
A purely analytic proof is given for an inequality that has as a direct consequence the two most important affine isoperimetric inequalities of plane convex geometry: The Blaschke-Santalo inequality and the affine isoperimetric inequality of affine d
Externí odkaz:
http://arxiv.org/abs/math/0402083
Autor:
Zhang, Gaoyong
Publikováno v:
Ann. of Math. (2) 149 (1999), no. 2, 535-543
H. Busemann and C. M. Petty posed the following problem in 1956: If K and L are origin-symmetric convex bodies in R^n and for each hyperplane H through the origin the volumes of their central slices satisfy vol(K cap H) < vol(L cap H), does it follow
Externí odkaz:
http://arxiv.org/abs/math/9903205