Zobrazeno 1 - 10
of 78
pro vyhledávání: '"Zhang, Zhuofan"'
Autor:
Zheng, Yilun, Zhang, Zhuofan, Wang, Ziming, Li, Xiang, Luan, Sitao, Peng, Xiaojiang, Chen, Lihui
To improve the performance of Graph Neural Networks (GNNs), Graph Structure Learning (GSL) has been extensively applied to reconstruct or refine original graph structures, effectively addressing issues like heterophily, over-squashing, and noisy stru
Externí odkaz:
http://arxiv.org/abs/2411.07672
Autor:
Zhang, Zhuofan, Zhu, Ziyu, Li, Pengxiang, Liu, Tengyu, Ma, Xiaojian, Chen, Yixin, Jia, Baoxiong, Huang, Siyuan, Li, Qing
Grounding natural language in physical 3D environments is essential for the advancement of embodied artificial intelligence. Current datasets and models for 3D visual grounding predominantly focus on identifying and localizing objects from static, ob
Externí odkaz:
http://arxiv.org/abs/2408.04034
Autor:
Zhu, Ziyu, Zhang, Zhuofan, Ma, Xiaojian, Niu, Xuesong, Chen, Yixin, Jia, Baoxiong, Deng, Zhidong, Huang, Siyuan, Li, Qing
A unified model for 3D vision-language (3D-VL) understanding is expected to take various scene representations and perform a wide range of tasks in a 3D scene. However, a considerable gap exists between existing methods and such a unified model, due
Externí odkaz:
http://arxiv.org/abs/2405.11442
We present a novel camera path optimization framework for the task of online video stabilization. Typically, a stabilization pipeline consists of three steps: motion estimating, path smoothing, and novel view rendering. Most previous methods concentr
Externí odkaz:
http://arxiv.org/abs/2212.02073
Autor:
Feng, Haoyu, Pan, Yaoqi, Zhang, Yijia, Zhang, Zhuofan, Huang, Yunye, Hou, Linxi, Xiao, Longqiang
Publikováno v:
In Chinese Journal of Chemical Engineering September 2024 73:70-80
Federated Learning is an algorithm suited for training models on decentralized data, but the requirement of a central "server" node is a bottleneck. In this document, we first introduce the notion of Decentralized Federated Learning (DFL). We then pe
Externí odkaz:
http://arxiv.org/abs/2108.03508
Autor:
Li, Yuqi1 (AUTHOR), Zhang, Zhuofan1 (AUTHOR), Wang, Siqi1 (AUTHOR), Du, Xing1 (AUTHOR), Li, Qifa1 (AUTHOR) liqifa@njau.edu.cn
Publikováno v:
Journal of Animal Science & Biotechnology. 12/5/2023, Vol. 14 Issue 1, p1-13. 13p.
Autor:
Shi, Xiaohui, Jia, Yongyi, Zhang, Zhuofan, Wu, Wenbo, Wu, Zijie, Chi, Meili, Zhao, Qun, Li, Erchao
Publikováno v:
In Aquaculture 15 May 2023 569
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.