Zobrazeno 1 - 10
of 216
pro vyhledávání: '"Zhang, Yong‐Tao"'
Autor:
Xu, Ziyao, Zhang, Yong-Tao
In this paper, we focus on the finite difference approximation of nonlinear degenerate parabolic equations, a special class of parabolic equations where the viscous term vanishes in certain regions. This vanishing gives rise to additional challenges
Externí odkaz:
http://arxiv.org/abs/2406.05237
High order fast sweeping methods for efficiently solving steady state solutions of hyperbolic PDEs were not available yet on unstructured meshes. In this paper, we extend high order fast sweeping methods to unstructured triangular meshes by applying
Externí odkaz:
http://arxiv.org/abs/2305.19361
Publikováno v:
In Journal of Computational Physics 1 October 2024 514
Autor:
Miksis, Zachary M., Zhang, Yong-Tao
Fixed-point fast sweeping methods are a class of explicit iterative methods developed in the literature to efficiently solve steady state solutions of hyperbolic partial differential equations (PDEs). As other types of fast sweeping schemes, fixed-po
Externí odkaz:
http://arxiv.org/abs/2201.08912
Autor:
Zhu, Xiaozhi, Zhang, Yong-Tao
The weighted essentially non-oscillatory (WENO) schemes are a popular class of high order accurate numerical methods for solving hyperbolic partial differential equations (PDEs). However when the spatial dimensions are high, the number of spatial gri
Externí odkaz:
http://arxiv.org/abs/2007.10196
Fixed-point iterative sweeping methods were developed in the literature to efficiently solve steady state solutions of Hamilton-Jacobi equations and hyperbolic conservation laws. Similar as other fast sweeping schemes, the key components of this clas
Externí odkaz:
http://arxiv.org/abs/2006.11885
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Computational costs of numerically solving multidimensional partial differential equations (PDEs) increase significantly when the spatial dimensions of the PDEs are high, due to large number of spatial grid points. For multidimensional reaction-diffu
Externí odkaz:
http://arxiv.org/abs/1810.11111
The weighted essentially non-oscillatory (WENO) schemes are a popular class of high order accurate numerical methods for solving hyperbolic partial differential equations (PDEs). The computational cost of such schemes increases significantly when the
Externí odkaz:
http://arxiv.org/abs/1804.00725
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.