Zobrazeno 1 - 10
of 159
pro vyhledávání: '"Zhang, Yashan"'
Autor:
Zhang, Yashan, Zheng, Tao
We introduce the notion of positivity for a real basic $(1,1)$ class in basic Bott-Chern cohomology group on foliated manifolds, and study the relationship between this positivity and the negativity of transverse holomorphic sectional curvature and g
Externí odkaz:
http://arxiv.org/abs/2109.03996
Autor:
Zhang, Yashan, Guo, Bojing, Jiang, Meirong, Li, Junjie, Wang, Zhijun, Wang, Lei, Wang, Jincheng, Lin, Xin
Publikováno v:
In Additive Manufacturing 5 August 2024 93
Autor:
Zhang, Gangao, Zhang, Yashan, Hou, Chengyi, Zhang, Qinghong, Li, Yaogang, Jin, Zhijie, Li, Kerui, Wang, Hongzhi
Publikováno v:
In Ceramics International 1 July 2024 50(13) Part B:23800-23807
Autor:
Zhang, Yashan
Teissier problem aims to characterize the equality case of Khovanskii-Teissier type inequality for $(1,1)$-classes on a compact K\"ahler manifold. When each of the involved $(1,1)$-classes is assumed to be nef and big, this problem has been solved by
Externí odkaz:
http://arxiv.org/abs/2108.13678
Autor:
Zhang, Yashan, Zheng, Tao
A recent celebrated theorem of Diverio-Trapani and Wu-Yau states that a compact K\"ahler manifold admitting a K\"ahler metric of quasi-negative holomorphic sectional curvature has an ample canonical line bundle, confirming a conjecture of Yau. In thi
Externí odkaz:
http://arxiv.org/abs/2010.01314
Autor:
Zhang, Yashan
We shall discuss a higher-rank Khovanskii-Teissier inequality, generalizing a theorem of Li. In the course of the proof, we develop new Hodge-Riemann bilinear relations in certain mixed settings, which in themselves slightly extend the existing resul
Externí odkaz:
http://arxiv.org/abs/2005.01240
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
In Journal of Manufacturing Processes 8 September 2023 101:561-575
Autor:
Zhang, Yashan
We derive some integral inequalities for holomorphic maps between complex manifolds. As applications, some rigidity and degeneracy theorems for holomorphic maps without assuming any pointwise curvature signs for both the domain and target manifolds a
Externí odkaz:
http://arxiv.org/abs/1905.13054
Autor:
Fong, Frederick Tsz-Ho, Zhang, Yashan
We study the local curvature estimates of long-time solutions to the normalized K\"ahler-Ricci flow on compact K\"ahler manifolds with semi-ample canonical line bundles. Using these estimates, we prove that on such a manifold, the set of singular fib
Externí odkaz:
http://arxiv.org/abs/1903.05939