Zobrazeno 1 - 10
of 214
pro vyhledávání: '"Zhang, Genkai"'
In this article, we obtain the explicit expression of the Casimir energy for 2-dimensional Clifford-Klein space forms in terms of the geometrical data of the underlying spacetime with the help of zeta-regularization techniques. The spacetime is geome
Externí odkaz:
http://arxiv.org/abs/2311.03331
Autor:
Zhang, Genkai
Let $G/K$ be an irreducible quaternionic symmetric space of rank $4$. We study the principal series representation $\pi_\nu=\text{Ind}_P^G(1\otimes e^\nu\otimes 1)$ of $G$ induced from the Heisenberg parabolic subgroup $P=MAN$ realized on $L^2(K/L)$,
Externí odkaz:
http://arxiv.org/abs/2309.05980
Let $(\mathfrak{g}, \mathfrak{k})$ be a complex quaternionic symmetric pair with $\mathfrak{k}$ having an ideal $\mathfrak{sl}(2, \mathbb{C})$, $\mathfrak{k}=\mathfrak{sl}(2, \mathbb{C})+\mathfrak{m}_c$. Consider the representation $S^m(\mathbb{C}^2)
Externí odkaz:
http://arxiv.org/abs/2306.15090
Every simple Hermitian Lie group has a unique family of spherical representations induced from a maximal parabolic subgroup whose unipotent radical is a Heisenberg group. For most Hermitian groups, this family contains a complementary series, and at
Externí odkaz:
http://arxiv.org/abs/2304.05663
We~identify the standard weighted Bergman kernels of spaces of nearly holomorphic functions, in~the sense of Shimura, on~bounded symmetric domains. This also yields a description of the analogous kernels for spaces of ``invariantly-polyanalytic'' fun
Externí odkaz:
http://arxiv.org/abs/2303.02256
Publikováno v:
Adv. Math. 422 (2023), 109001
For a Hermitian Lie group $G$, we study the family of representations induced from a character of the maximal parabolic subgroup $P=MAN$ whose unipotent radical $N$ is a Heisenberg group. Realizing these representations in the non-compact picture on
Externí odkaz:
http://arxiv.org/abs/2209.04273
For a holomorphic vector bundle $E$ over a Hermitian manifold $M$ there are two important notions of curvature positivity, the Griffiths positivity and Nakano positivity. We study the consequence of these positivities and the relevant estimates. If $
Externí odkaz:
http://arxiv.org/abs/2208.06964
Autor:
Zhang, Genkai
We study branching problem of the metaplectic representation of $Sp(2, \mathbb R)$ under its principle subgroup $SL(2, \mathbb R)$. We find the complete decomposition.
Comment: Updated version, minor revision and corrections of typos after the r
Comment: Updated version, minor revision and corrections of typos after the r
Externí odkaz:
http://arxiv.org/abs/2105.05604
Autor:
Zhang, Genkai
Publikováno v:
J. Funct. Anal. 282 (2022), no. 8, Paper No. 109399. (Updated and final version)
Let $G$ be an irreducible Hermitian Lie group and $D=G/K$ its bounded symmetric domain in $\mathbb C^d$ of rank $r$. Each $\gamma$ of the Harish-Chandra strongly orthogonal roots $\{\gamma_1, \cdots, \gamma_r\}$ defines a Heisenberg parabolic subgrou
Externí odkaz:
http://arxiv.org/abs/2105.05568
Publikováno v:
In Journal of Functional Analysis 15 January 2024 286(2)