Zobrazeno 1 - 5
of 5
pro vyhledávání: '"Zhaksylyk N Tasmambetov"'
Autor:
Zhaksylyk N Tasmambetov
Publikováno v:
Vestnik Samarskogo Gosudarstvennogo Tehničeskogo Universiteta. Seriâ: Fiziko-Matematičeskie Nauki, Vol 19, Iss 4, Pp 710-721 (2015)
It is shown that the second order partial differential equations system defined by author is the most general system. It is possible to get all systems, solutions of which are hypergeometric functions of two variables from a Horn list and biorthogo
Externí odkaz:
https://doaj.org/article/d63a5422f7a54f91999ac7244ea5f5fe
Autor:
Zhaksylyk N Tasmambetov
Publikováno v:
Vestnik Samarskogo Gosudarstvennogo Tehničeskogo Universiteta. Seriâ: Fiziko-Matematičeskie Nauki, Vol 17, Iss 4, Pp 25-33 (2013)
The given work studies the regular and irregular singular curves of special systems of the second order partial differential equations. By the means of rank and antirank, the necessary and sufficient condition for an existence of regular solution, al
Externí odkaz:
https://doaj.org/article/17e5e94f4d9645aa9392f79f6a61bc4c
Publikováno v:
AIP Conference Proceedings.
The possibilities of constructing normal-regular solutions of a system consisting of three partial differential equations of the second order are studied by the Frobenius-Latysheva method. The method of determining unknown coefficients is shown and t
Publikováno v:
AIP Conference Proceedings.
Studying a special system of differential equations in the separate production of the second order is solved by the degenerate hypergeometric function reducing to the Bessel functions of two variables. To construct a solution of this system near regu
Autor:
Zhaksylyk N Tasmambetov
Publikováno v:
Вестник Самарского государственного технического университета. Серия «Физико-математические науки». 4:25-33
The given work studies the regular and irregular singular curves of special systems of the second order partial differential equations. By the means of rank and antirank, the necessary and sufficient condition for an existence of regular solution, al