Zobrazeno 1 - 10
of 15 539
pro vyhledávání: '"Zeta function"'
Autor:
时小春(SHI Xiaochun)
Publikováno v:
Zhejiang Daxue xuebao. Lixue ban, Vol 51, Iss 5, Pp 580-585 (2024)
By introducing multiple parameters, and using partial fraction expansion of Cotangent function, a new Hilbert-type inequality defined in the whole plane with the constant factor related to the higher derivative of cotangent function is established. A
Externí odkaz:
https://doaj.org/article/59dbf400ded84ad6931db8cd914ea1db
Autor:
Laurinčikas Antanas, Šiaučiūnas Darius
Publikováno v:
Open Mathematics, Vol 22, Iss 1, Pp 115-145 (2024)
In this article, we consider the asymptotic behaviour of the modified Mellin transform Z(s){\mathcal{Z}}\left(s), s=σ+its=\sigma +it, of the Riemann zeta-function using weak convergence of probability measures in the space of analytic functions defi
Externí odkaz:
https://doaj.org/article/edd8cd4b9dda4d31aaecbd8c89ba377e
Autor:
Jianjia Wang, Edwin R. Hancock
Publikováno v:
Scientific Reports, Vol 14, Iss 1, Pp 1-16 (2024)
Abstract Statistical characterizations of complex network structures can be obtained from both the Ihara Zeta function (in terms of prime cycle frequencies) and the partition function from statistical mechanics. However, these two representations are
Externí odkaz:
https://doaj.org/article/734e304c134046528a1a4fc6defebcc9
Autor:
Zhenjiang Pan, Zhengang Wu
Publikováno v:
AIMS Mathematics, Vol 9, Iss 6, Pp 16564-16585 (2024)
In this paper, we derive the asymptotic formulas $ B^*_{r, s, t}(n) $ such that $ \mathop{\lim} \limits_{n \rightarrow \infty} \left\{ \left( \sum\limits^{\infty}_{k = n} \frac{1}{k^r(k+t)^s} \right)^{-1} - B^*_{r,s,t}(n) \right\} = 0, $ where
Externí odkaz:
https://doaj.org/article/0c9acae53be64923a6ebcbe946741a8e
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Banks, William
Publikováno v:
In Indagationes Mathematicae November 2024 35(6):1282-1293