Zobrazeno 1 - 10
of 101
pro vyhledávání: '"Zenghu Li"'
Publikováno v:
Proc. Steklov Inst. Math. 316, 137-159 (2022)
We prove a scaling limit theorem for discrete Galton-Watson processes in varying environments. A simple sufficient condition for the weak convergence in the Skorokhod space is given in terms of probability generating functions. The limit theorem give
Externí odkaz:
http://arxiv.org/abs/2204.06339
Autor:
Shukai Chen, Zenghu Li
Publikováno v:
Journal of Applied Probability. :1-23
We prove some estimates for the variations of transition probabilities of the (1+1)-affine process. From these estimates we deduce the strong Feller and the ergodic properties of the total variation distance of the process. The key strategy is the pa
Publikováno v:
Trudy Matematicheskogo Instituta imeni V.A. Steklova. 316:145-168
Доказана теорема о предельном распределении нормированных дискретных процессов Гальтона-Ватсона, эволюционирующих в меняющихся среда
Autor:
Zenghu Li
Publikováno v:
2022 4th International Conference on Frontiers Technology of Information and Computer (ICFTIC).
Autor:
Zenghu Li
Publikováno v:
Teoriya Veroyatnostei i ee Primeneniya. 66:342-368
Для суперпроцессов Доусона-Ватанабе, с иммиграцией или без иммиграции, при естественных предположениях доказываются свойства эргодичн
Publikováno v:
Acta Mathematicae Applicatae Sinica, English Series. 36:361-373
For a positive continuous function f satisfying some standard conditions, we study the f-moments of continuous-state branching processes with or without immigration. The main results give criteria for the existence of the f-moments. The characterizat
Autor:
Zenghu Li
Publikováno v:
Probability Theory and Stochastic Modelling ISBN: 9783662669099
Probability and Its Applications ISBN: 9783642150036
Probability and Its Applications ISBN: 9783642150036
Martingale problems play a very important role in the study of Markov processes. In this chapter we investigate some martingale problems associated with Dawson–Watanabe superprocesses. In particular, we shall prove the equivalence of a number of ma
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::6293731f7472a96840576fcf9634cea4
https://doi.org/10.1007/978-3-662-66910-5_7
https://doi.org/10.1007/978-3-662-66910-5_7
Autor:
Zenghu Li
Publikováno v:
Probability Theory and Stochastic Modelling ISBN: 9783662669099
Probability and Its Applications ISBN: 9783642150036
Probability and Its Applications ISBN: 9783642150036
In this chapter, we discuss the basic properties of Laplace functionals of random measures, which provide an important tool in the study of measure-valued processes. In particular, we give some characterizations of the convergence of random measures
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::0f89162a1bbb0316306ed8d612c825db
https://doi.org/10.1007/978-3-662-66910-5_1
https://doi.org/10.1007/978-3-662-66910-5_1
Autor:
Zenghu Li
Publikováno v:
Probability Theory and Stochastic Modelling ISBN: 9783662669099
Probability and Its Applications ISBN: 9783642150036
Probability and Its Applications ISBN: 9783642150036
Generalized Ornstein–Uhlenbeck processes constitute a large class of explicit examples of Markov processes in infinite-dimensional spaces with rich mathematical structures. Those processes may have non-trivial invariant measures, which make them be
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::810d9de078eb8b724d6d9b319b580a72
https://doi.org/10.1007/978-3-662-66910-5_13
https://doi.org/10.1007/978-3-662-66910-5_13
Autor:
Zenghu Li
Publikováno v:
Probability Theory and Stochastic Modelling ISBN: 9783662669099
Probability and Its Applications ISBN: 9783642150036
Probability and Its Applications ISBN: 9783642150036
A one-dimensional CB-process is a Markov process with branching property taking values from the positive half line. A more general model is the CB-process with immigration which deals with the situation where immigrants may come from outer sources. I
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::5e1f36fe8a7275dbde1f4cc17b2781de
https://doi.org/10.1007/978-3-662-66910-5_3
https://doi.org/10.1007/978-3-662-66910-5_3