Zobrazeno 1 - 10
of 44
pro vyhledávání: '"Zeng-Qi Ou"'
Autor:
Zeng-Qi Ou, Chun Li
Publikováno v:
Boundary Value Problems, Vol 2018, Iss 1, Pp 1-7 (2018)
Abstract With the aid of the three-critical-point theorem due to Brezis and Nirenberg (see Brezis and Nirenberg in Commun. Pure Appl. Math. 44:939–963, 1991), two existence results of at least two nontrivial solutions for a class of nonlocal Kirchh
Externí odkaz:
https://doaj.org/article/b7707fdb966c489c89a3e022503aff1d
Autor:
Ying Lv, Zeng-Qi Ou
Publikováno v:
Boundary Value Problems, Vol 2017, Iss 1, Pp 1-16 (2017)
Abstract The existence of weak solutions for a class of ( p , q ) $(p,q)$ -Laplacian systems is obtained by using a new linking theorem on the product space W 0 1 , p ( Ω ) × W 0 1 , q ( Ω ) $W^{1,p}_{0}(\Omega)\times W^{1,q}_{0}(\Omega)$ .
Externí odkaz:
https://doaj.org/article/e1ec159ee1fd488aa0e8f61ecd4cf1c5
Publikováno v:
Boundary Value Problems, Vol 2017, Iss 1, Pp 1-14 (2017)
Abstract Multiple solutions for a class of superquadratic elliptic systems near resonance with high eigenvalues are obtained by using the nabla theorem due to Marino and Saccon in (Topol. Methods Nonlinear Anal. 17:213-237, 2001) and the linking theo
Externí odkaz:
https://doaj.org/article/6973c03b89ea44e3bdf830bb20d48d3d
Autor:
Zeng-Qi Ou
Publikováno v:
Electronic Journal of Differential Equations, Vol 2016, Iss 163,, Pp 1-10 (2016)
We show the existence of weak solutions for a class of (p,q)-Laplacian elliptic systems at resonance, under certain Landesman-Lazer-type conditions by using critical point theorem.
Externí odkaz:
https://doaj.org/article/dc9cabd8de324bf3a73d553199bf7a46
Publikováno v:
Electronic Journal of Differential Equations, Vol 2014, Iss 64,, Pp 1-13 (2014)
Some existence theorems are obtained for periodic solutions of nonautonomous second-order differential systems with (q,p)-Laplacian by using the least action principle and the saddle point theorem.
Externí odkaz:
https://doaj.org/article/0e55c89426b44b248550cc57d4ec1eee
Publikováno v:
Electronic Journal of Differential Equations, Vol 2013, Iss 276,, Pp 1-10 (2013)
Using a version of the generalized mountain pass theorem, we obtain the existence of nontrivial solutions for a class of superquadratic elliptic systems.
Externí odkaz:
https://doaj.org/article/562d01c3211a4d74913656ef3c14f2b2
Publikováno v:
Abstract and Applied Analysis, Vol 2013 (2013)
Using the Fountain theorem and a version of the Local Linking theorem, we obtain some existence and multiplicity results for a class of fourth-order elliptic equations.
Externí odkaz:
https://doaj.org/article/ceded8c5ba4e48308c7c8dd34a0aa6b4
In this paper, we first study the existence of ground state solutions for the following Schrödinger systems { − ∆ u + V ∞ u = G u ( u , v ) , x ∈ R N , − ∆ v + V ∞ v = G v ( u , v ) , x ∈ R N , u , v > 0 , u , v ∈ H 1 ( R N ) , whe
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::598651e41dcece04a7062022efb276d5
https://doi.org/10.22541/au.166678103.39059274/v1
https://doi.org/10.22541/au.166678103.39059274/v1
Publikováno v:
Journal of Applied Analysis & Computation. 11:772-789
We are interested in the existence of positive and sign-changing solutions for a fractional Kirchhoff equation. Under some mild conditions on the potentials $ V $ and $ h $, using variational methods, we prove the existence of positive ground state s
Autor:
Zeng-Qi Ou, Xing-Ju Chen
Publikováno v:
Journal of Applied Analysis & Computation. 11:1006-1016
In this paper, we obtain the existence of nontrivial solutions for the Kirchhoff type equation with Fucik-type resonance at infinity by variational methods.