Zobrazeno 1 - 10
of 118
pro vyhledávání: '"Zelenko, Igor"'
Autor:
Lin, Zaifeng, Zelenko, Igor
The classical result of Eisenhart states that if a Riemannian metric $g$ admits a Riemannian metric that is not constantly proportional to $g$ and has the same (parameterized) geodesics as $g$ in a neighborhood of a given point, then $g$ is a direct
Externí odkaz:
http://arxiv.org/abs/2308.14218
Autor:
Berkolaiko, Gregory, Zelenko, Igor
Publikováno v:
Invent. Math. (2024)
In many applied problems one seeks to identify and count the critical points of a particular eigenvalue of a smooth parametric family of self-adjoint matrices, with the parameter space often being known and simple, such as a torus. Among particular s
Externí odkaz:
http://arxiv.org/abs/2304.04331
Autor:
Sykes, David, Zelenko, Igor
We prove that for every $n\geq 3$ the sharp upper bound for the dimension of the symmetry groups of homogeneous, 2-nondegenerate, $(2n+1)$-dimensional CR manifolds of hypersurface type with a $1$-dimensional Levi kernel is equal to $n^2+7$, and simul
Externí odkaz:
http://arxiv.org/abs/2102.08599
Autor:
Sykes, David, Zelenko, Igor
We construct canonical absolute parallelisms over real-analytic manifolds equipped with $2$-nondegenerate, hypersurface-type CR structures of arbitrary odd dimension not less than $7$ whose Levi kernel has constant rank belonging to a broad subclass
Externí odkaz:
http://arxiv.org/abs/2010.02770
A typical linear projection of the Grassmannian in its Plucker embedding is injective, unless its image is a projective space. A notable exception are self-adjoint linear projections, which have even degree. We consider linear projections of Gr_3(C^6
Externí odkaz:
http://arxiv.org/abs/2004.10070
Autor:
Doubrov, Boris, Zelenko, Igor
We construct a sequence of rank 3 distributions on $n$-dimensional manifolds for any $n\geq 7$ such that the dimension of their symmetry group grows exponentially in $n$ (more precisely it is equal to $\operatorname{Fib}_{n-1}+n+2$, where $\operatorn
Externí odkaz:
http://arxiv.org/abs/2004.07201
H. Weyl in 1921 demonstrated that for a connected manifold of dimension greater than $1$, if two Riemannian metrics are conformal and have the same geodesics up to a reparametrization, then one metric is a constant scaling of the other one. In the pr
Externí odkaz:
http://arxiv.org/abs/2001.08584
Autor:
Sykes, David, Zelenko, Igor
Publikováno v:
Linear Algebra Appl. 590 (2020), 32--61
Motivated by a problem in local differential geometry of Cauchy--Riemann (CR) structures of hypersurface type, we find a canonical form for pairs consisting of a nondegenerate Hermitian form and a self-adjoint antilinear operator, or, equivalently, c
Externí odkaz:
http://arxiv.org/abs/1909.09201
Autor:
Sykes, David, Zelenko, Igor
Publikováno v:
In Advances in Mathematics 15 January 2023 413
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.