Zobrazeno 1 - 10
of 210
pro vyhledávání: '"Zeger, Kenneth"'
Autor:
Congero, Spencer, Zeger, Kenneth
For any finite discrete source, the competitive advantage of prefix code $C_1$ over prefix code $C_2$ is the probability $C_1$ produces a shorter codeword than $C_2$, minus the probability $C_2$ produces a shorter codeword than $C_1$. For any source,
Externí odkaz:
http://arxiv.org/abs/2311.07009
Autor:
Congero, Spencer, Zeger, Kenneth
A property of prefix codes called strong monotonicity is introduced, and it is proven that for a given source, a prefix code is optimal if and only if it is complete and strongly monotone.
Externí odkaz:
http://arxiv.org/abs/2311.07007
Autor:
Congero, Spencer1 (AUTHOR) scongero@ucsd.edu, Zeger, Kenneth1 (AUTHOR) ken@zeger.us
Publikováno v:
Entropy. Dec2024, Vol. 26 Issue 12, p1000. 7p.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Connelly, Joseph, Zeger, Kenneth
The rate of a network code is the ratio of the block size of the network's messages to that of its edge codewords. We compare the linear capacities and achievable rate regions of networks using finite field alphabets to the more general cases of arbi
Externí odkaz:
http://arxiv.org/abs/1706.01152
Autor:
Connelly, Joseph, Zeger, Kenneth
We prove the following results regarding the linear solvability of networks over various alphabets. For any network, the following are equivalent: (i) vector linear solvability over some finite field, (ii) scalar linear solvability over some ring, (i
Externí odkaz:
http://arxiv.org/abs/1608.01737
Autor:
Connelly, Joseph, Zeger, Kenneth
Fixed-size commutative rings are quasi-ordered such that all scalar linearly solvable networks over any given ring are also scalar linearly solvable over any higher-ordered ring. As consequences, if a network has a scalar linear solution over some fi
Externí odkaz:
http://arxiv.org/abs/1608.01738
Autor:
Connelly, Joseph, Zeger, Kenneth
For each integer $m \geq 2$, a network is constructed which is solvable over an alphabet of size $m$ but is not solvable over any smaller alphabets. If $m$ is composite, then the network has no vector linear solution over any $R$-module alphabet and
Externí odkaz:
http://arxiv.org/abs/1601.03803
Publikováno v:
IEEE Transactions on Information Theory ( Volume: 61, Issue: 5, May 2015) 2510 - 2530
Two characteristic-dependent linear rank inequalities are given for eight variables. Specifically, the first inequality holds for all finite fields whose characteristic is not three and does not in general hold over characteristic three. The second i
Externí odkaz:
http://arxiv.org/abs/1401.2507
Publikováno v:
IEEE Transactions on Information Theory ( Volume: 61, Issue: 5, May 2015) 2488 - 2509
Determining the achievable rate region for networks using routing, linear coding, or non-linear coding is thought to be a difficult task in general, and few are known. We describe the achievable rate regions for four interesting networks (completely
Externí odkaz:
http://arxiv.org/abs/1311.4601