Zobrazeno 1 - 7
of 7
pro vyhledávání: '"Zed Lee"'
Publikováno v:
Machine Learning and Knowledge Discovery in Databases ISBN: 9783031264214
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::f1b38ddeb105ff6f0135e1c3a77eea4e
https://doi.org/10.1007/978-3-031-26422-1_5
https://doi.org/10.1007/978-3-031-26422-1_5
Publikováno v:
Discovery Science ISBN: 9783031188398
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::341767935196e8256e72760769564081
https://doi.org/10.1007/978-3-031-18840-4_35
https://doi.org/10.1007/978-3-031-18840-4_35
Publikováno v:
Advances in Intelligent Data Analysis XIX ISBN: 9783030742508
IDA
IDA
Multivariate histogram snapshots are complex data structures that frequently occur in predictive maintenance. Histogram snapshots store large amounts of data in devices with small memory capacity, though it remains a challenge to analyze them effecti
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::f0d9b6bdb42c8dcc7484823ef2ead636
https://doi.org/10.1007/978-3-030-74251-5_30
https://doi.org/10.1007/978-3-030-74251-5_30
Autor:
Alexandra Farazouli, Zed Lee, Vanessa Lislevand, Jimmy Ljungman, John Pavlopoulos, Panagiotis Papapetrou, Uno Fors
Publikováno v:
Discovery Science ISBN: 9783030889418
DS
DS
Automated grading of free-text exam responses is a very challenging task due to the complex nature of the problem, such as lack of training data and biased ground-truth of the graders. In this paper, we focus on the automated grading of free-text res
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::4bee92b8876bea3132d2435d54724dfe
https://doi.org/10.1007/978-3-030-88942-5_1
https://doi.org/10.1007/978-3-030-88942-5_1
Publikováno v:
Machine Learning and Knowledge Discovery in Databases ISBN: 9783030676575
ECML/PKDD (1)
ECML/PKDD (1)
Sequences of event intervals occur in several application domains, while their inherent complexity hinders scalable solutions to tasks such as clustering and classification. In this paper, we propose a novel spectral embedding representation of event
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::ea94807a34bef34fe6965129c884553a
https://doi.org/10.1007/978-3-030-67658-2_41
https://doi.org/10.1007/978-3-030-67658-2_41
Publikováno v:
KDD
Mining frequent patterns of event intervals from a large collection of interval sequences is a problem that appears in several application domains. In this paper, we propose Z-Miner, a novel algorithm for solving this problem that addresses the defic
Publikováno v:
CBMS
Adverse drug events are pervasive and costly medical conditions, in which novel research approaches are needed to investigate the nature of such events further and ultimately achieve early detection and prevention. In this paper, we seek to character