Zobrazeno 1 - 10
of 463
pro vyhledávání: '"Zdeborová, Lenka"'
Current progress in artificial intelligence is centered around so-called large language models that consist of neural networks processing long sequences of high-dimensional vectors called tokens. Statistical physics provides powerful tools to study t
Externí odkaz:
http://arxiv.org/abs/2410.18858
Autor:
Clarté, Lucas, Zdeborová, Lenka
Conformal prediction has emerged as a powerful tool for building prediction intervals that are valid in a distribution-free way. However, its evaluation may be computationally costly, especially in the high-dimensional setting where the dimensionalit
Externí odkaz:
http://arxiv.org/abs/2410.16493
Autor:
Zdeborova, Lenka
L'optimisation est un concept fondamental dans beaucoup de domaines scientifiques comme l'informatique, la théorie de l'information, les sciences de l'ingénieur et la physique statistique, ainsi que pour la biologie et les sciences sociales. Un pro
Externí odkaz:
http://tel.archives-ouvertes.fr/tel-00294232
http://tel.archives-ouvertes.fr/docs/00/29/42/32/PDF/lenicka.pdf
http://tel.archives-ouvertes.fr/docs/00/29/42/32/PDF/lenicka.pdf
Autor:
Borges, Beatriz, Foroutan, Negar, Bayazit, Deniz, Sotnikova, Anna, Montariol, Syrielle, Nazaretzky, Tanya, Banaei, Mohammadreza, Sakhaeirad, Alireza, Servant, Philippe, Neshaei, Seyed Parsa, Frej, Jibril, Romanou, Angelika, Weiss, Gail, Mamooler, Sepideh, Chen, Zeming, Fan, Simin, Gao, Silin, Ismayilzada, Mete, Paul, Debjit, Schöpfer, Alexandre, Janchevski, Andrej, Tiede, Anja, Linden, Clarence, Troiani, Emanuele, Salvi, Francesco, Behrens, Freya, Orsi, Giacomo, Piccioli, Giovanni, Sevel, Hadrien, Coulon, Louis, Pineros-Rodriguez, Manuela, Bonnassies, Marin, Hellich, Pierre, van Gerwen, Puck, Gambhir, Sankalp, Pirelli, Solal, Blanchard, Thomas, Callens, Timothée, Aoun, Toni Abi, Alonso, Yannick Calvino, Cho, Yuri, Chiappa, Alberto, Sclocchi, Antonio, Bruno, Étienne, Hofhammer, Florian, Pescia, Gabriel, Rizk, Geovani, Dadi, Leello, Stoffl, Lucas, Ribeiro, Manoel Horta, Bovel, Matthieu, Pan, Yueyang, Radenovic, Aleksandra, Alahi, Alexandre, Mathis, Alexander, Bitbol, Anne-Florence, Faltings, Boi, Hébert, Cécile, Tuia, Devis, Maréchal, François, Candea, George, Carleo, Giuseppe, Chappelier, Jean-Cédric, Flammarion, Nicolas, Fürbringer, Jean-Marie, Pellet, Jean-Philippe, Aberer, Karl, Zdeborová, Lenka, Salathé, Marcel, Jaggi, Martin, Rajman, Martin, Payer, Mathias, Wyart, Matthieu, Gastpar, Michael, Ceriotti, Michele, Svensson, Ola, Lévêque, Olivier, Ienne, Paolo, Guerraoui, Rachid, West, Robert, Kashyap, Sanidhya, Piazza, Valerio, Simanis, Viesturs, Kuncak, Viktor, Cevher, Volkan, Schwaller, Philippe, Friedli, Sacha, Jermann, Patrick, Kaser, Tanja, Bosselut, Antoine
AI assistants are being increasingly used by students enrolled in higher education institutions. While these tools provide opportunities for improved teaching and education, they also pose significant challenges for assessment and learning outcomes.
Externí odkaz:
http://arxiv.org/abs/2408.11841
We consider the problem of learning a target function corresponding to a single hidden layer neural network, with a quadratic activation function after the first layer, and random weights. We consider the asymptotic limit where the input dimension an
Externí odkaz:
http://arxiv.org/abs/2408.03733
Noiseless compressive sensing is a two-steps setting that allows for undersampling a sparse signal and then reconstructing it without loss of information. The LASSO algorithm, based on $\lone$ regularization, provides an efficient and robust to addre
Externí odkaz:
http://arxiv.org/abs/2408.08319
How do different architectural design choices influence the space of solutions that a transformer can implement and learn? How do different components interact with each other to shape the model's hypothesis space? We investigate these questions by c
Externí odkaz:
http://arxiv.org/abs/2407.11542
Autor:
Keup, Christian, Zdeborová, Lenka
This work explores multi-modal inference in a high-dimensional simplified model, analytically quantifying the performance gain of multi-modal inference over that of analyzing modalities in isolation. We present the Bayes-optimal performance and weak
Externí odkaz:
http://arxiv.org/abs/2407.03522
We study the fixed points of outer-totalistic cellular automata on sparse random regular graphs. These can be seen as constraint satisfaction problems, where each variable must adhere to the same local constraint, which depends solely on its state an
Externí odkaz:
http://arxiv.org/abs/2406.01710
Autor:
Troiani, Emanuele, Dandi, Yatin, Defilippis, Leonardo, Zdeborová, Lenka, Loureiro, Bruno, Krzakala, Florent
Multi-index models - functions which only depend on the covariates through a non-linear transformation of their projection on a subspace - are a useful benchmark for investigating feature learning with neural nets. This paper examines the theoretical
Externí odkaz:
http://arxiv.org/abs/2405.15480