Zobrazeno 1 - 9
of 9
pro vyhledávání: '"Zawalski, Bartłomiej"'
An infinitely smooth symmetric convex body $K\subset\mathbb R^d$ is called $k$-separably integrable, $1\leq k
Externí odkaz:
http://arxiv.org/abs/2306.17127
Autor:
Zawalski, Bartłomiej
Let $f\in W^{3,1}_{\mathrm{loc}}(\Omega)$ be a function defined on a connected open subset $\Omega\subseteq\mathbb R^2$. We will show that its graph is contained in a quadratic surface if and only if $f$ is a weak solution to a certain system of \nth
Externí odkaz:
http://arxiv.org/abs/2304.08073
Autor:
Zawalski, Bartłomiej
We will prove that an origin-symmetric star-convex body $K$ with sufficiently smooth boundary and such that every hyperplane section of $K$ passing through the origin is a body of affine revolution, is itself a body of affine revolution. This will gi
Externí odkaz:
http://arxiv.org/abs/2304.07074
We show that any positive Rajchman measure of Minkowski dimension $0$ has a non-natural spectrum as an element of the multiplier algebra of $H^{1}_{0}(\T)$. The proof is based on the estimation of the norm of the convolution operator given by a singu
Externí odkaz:
http://arxiv.org/abs/2206.06958
Autor:
Zawalski, Bartłomiej
We will give a concise formula for the Hessian determinant of a smooth function $y:\mathbb R^n\supseteq\Omega\to\mathbb R$ such that its graph is contained in a quadratic hypersurface. The proof will make heavy use of matrix algebra.
Externí odkaz:
http://arxiv.org/abs/2203.04082
Publikováno v:
In Advances in Mathematics April 2024 441
Autor:
Zawalski, Bartłomiej
Publikováno v:
Contributions to Algebra & Geometry; Sep2024, Vol. 65 Issue 3, p495-509, 15p
Publikováno v:
In Methods 1 October 2020 181-182:80-85
Autor:
Zawalski, Bartłomiej
Publikováno v:
Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry; 20240101, Issue: Preprints p1-21, 21p