Zobrazeno 1 - 10
of 131
pro vyhledávání: '"Zarichnyi, M."'
Publikováno v:
Colloq. Math. 166 (2021) , 251-266
Let $p\in[1,\infty]$ and $F:\mathbf{Set}\to\mathbf{Set}$ be a functor with finite supports in the category $\mathbf{Set}$ of sets. Given a non-empty metric space $(X,d_X)$, we introduce the distance $d^p_{FX}$ on the functor-space $FX$ as the largest
Externí odkaz:
http://arxiv.org/abs/2004.02017
Autor:
Koporkh, K. M.1 (AUTHOR), Zarichnyi, M. M.2 (AUTHOR) zarichnyi@yahoo.com
Publikováno v:
Journal of Mathematical Sciences. Aug2023, Vol. 274 Issue 5, p594-601. 8p.
Publikováno v:
Fuzzy Sets and Systems 175:1 (2011), 96-104
We introduce a fuzzy metric on the set of probability measures on a fuzzy metric space. The construction is an analogue, in the realm of fuzzy metric spaces, of the Prokhorov metric on the set of probability measures on compact metric spaces.
Externí odkaz:
http://arxiv.org/abs/1105.3884
Autor:
Kozhan, R., Zarichnyi, M.
For the functors acting in the category of compact Hausdorff spaces, we introduce the so-called open multi-commutativity property, which generalizes both bicommutativity and openness, and prove that this property is satisfied by the functor of probab
Externí odkaz:
http://arxiv.org/abs/math/0409590
Autor:
Bazylevych, L. E., Zarichnyi, M. M.
We present an alternative proof of the following fact: the hyperspace of compact closed subsets of constant width in $\mathbb R^n$ is a contractible Hilbert cube manifold. The proof also works for certain subspaces of compact convex sets of constant
Externí odkaz:
http://arxiv.org/abs/math/0401060
Autor:
Tymchatyn, E. D., Zarichnyi, M.
We consider the question of simultaneous extension of (pseudo)metrics defined on nonempty closed subsets of a compact metrizable space. The main result is a counterpart of the result due to K\"unzi and Shapiro for the case of extension operators of p
Externí odkaz:
http://arxiv.org/abs/math/0211215
Autor:
Dranishnikov, A., Zarichnyi, M.
We construct a universal space for the class of proper metric spaces of bounded geometry and of given asymptotic dimension. As a consequence of this result, we establish coincidence of the asymptotic dimension with the asymptotic inductive dimensions
Externí odkaz:
http://arxiv.org/abs/math/0211069
It is proved that there is no structure of left (right) cancelative semigroup on $[L]$-dimensional universal space for the class of separable compact spaces of extensional dimension $\le [L]$. Besides, we note that the homeomorphism group of $[L]$-di
Externí odkaz:
http://arxiv.org/abs/math/0109106
Autor:
Chigogidze, Alex, Zarichnyi, M. M.
We give a topological characterization of the n-dimensional pseudo-boundary of the (2n+1)-dimensional Euclidean space.
Comment: 7 pages
Comment: 7 pages
Externí odkaz:
http://arxiv.org/abs/math/9911128
Publikováno v:
In Topology and its Applications 1 November 2017 231:353-372