Zobrazeno 1 - 10
of 114
pro vyhledávání: '"Zanini, Chiara"'
Autor:
Knees, Dorothee, Zanini, Chiara
We study a rate-independent system with non-convex energy and in the case of a time-discontinuous loading. We prove existence of the rate-dependent viscous regularization by time-incremental problems, while the existence of the so called parameterize
Externí odkaz:
http://arxiv.org/abs/1909.11505
Publikováno v:
Eur. J. Appl. Math 30 (2019) 117-175
This article is the third one in a series of papers by the authors on vanishing-viscosity solutions to rate-independent damage systems. While in the first two papers [KRZ13, KRZ15] the assumptions on the spatial domain $\Omega$ were kept as general a
Externí odkaz:
http://arxiv.org/abs/1704.08849
A rate-independent model for the quasistatic evolution of a magnetoelastic thin film is advanced and analyzed. Starting from the three-dimensional setting, we present an evolutionary $\Gamma$-convergence argument in order to pass to the limit in one
Externí odkaz:
http://arxiv.org/abs/1405.6887
This paper focuses on rate-independent damage in elastic bodies. Since the driving energy is nonconvex, solutions may have jumps as a function of time, and in this situation it is known that the classical concept of energetic solutions for rate-indep
Externí odkaz:
http://arxiv.org/abs/1311.3742
Autor:
Arcara, Giorgio, Franzon, Francesca, Gastaldon, Simone, Brotto, Silvia, Semenza, Carlo, Peressotti, Francesca, Zanini, Chiara
Publikováno v:
In Cortex July 2019 116:104-121
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Zanini, Chiara, Zanolin, Fabio
We deal with the periodic boundary value problem for a second-order nonlinear ODE which includes the case of the Nagumo type equation $v_{xx} - g v + n(x) F(v) = 0,$ previously considered by Grindrod and Sleeman and by Chen and Bell in the study of n
Externí odkaz:
http://arxiv.org/abs/0708.2342
Autor:
Toader, Rodica, Zanini, Chiara
We introduce a new model of irreversible quasistatic crack growth in which the evolution of cracks is the limit of a suitably modified $\epsilon$-gradient flow of the energy functional, as the "viscosity" parameter $\epsilon$ tends to zero.
Comm
Comm
Externí odkaz:
http://arxiv.org/abs/math/0607596
Autor:
Zanini, Chiara
In this paper we give a description of the asymptotic behavior, as $\epsilon\to 0$, of the $\epsilon$-gradient flow in the finite dimensional case. Under very general assumptions we prove that it converges to an evolution obtained by connecting some
Externí odkaz:
http://arxiv.org/abs/math/0607461
Autor:
Zanini, Chiara, Zanolin, Fabio
We deal with the periodic boundary value problem for a second-order nonlinear ODE which includes the case of the Nagumo type equation $v_{xx} - g v + n(x) F(v) = 0,$ previously considered by Grindrod and Sleeman and by Chen and Bell in the study of t
Externí odkaz:
http://arxiv.org/abs/math/0607042