Zobrazeno 1 - 10
of 129
pro vyhledávání: '"Zambelli, Giacomo"'
Let $D=(V,A)$ be a digraph. For an integer $k\geq 1$, a $k$-arc-connected flip is an arc subset of $D$ such that after reversing the arcs in it the digraph becomes (strongly) $k$-arc-connected. The first main result of this paper introduces a suffici
Externí odkaz:
http://arxiv.org/abs/2310.19472
Autor:
Giordani, Matteo, Taussi, Marco, Meli, Maria Assunta, Roselli, Carla, Zambelli, Giacomo, Fagiolino, Ivan, Mattioli, Michele
Publikováno v:
In Science of the Total Environment 1 January 2024 906
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
We study quantitative criteria for evaluating the strength of valid inequalities for Gomory and Johnson's finite and infinite group models and we describe the valid inequalities that are optimal for these criteria. We justify and focus on the criteri
Externí odkaz:
http://arxiv.org/abs/1710.07672
We present a new class of polynomial-time algorithms for submodular function minimization (SFM), as well as a unified framework to obtain strongly polynomial SFM algorithms. Our algorithms are based on simple iterative methods for the minimum-norm pr
Externí odkaz:
http://arxiv.org/abs/1707.05065
Publikováno v:
Mathematical Programming, vol. 141, 2013, pp. 561--576
This paper contributes to the theory of cutting planes for mixed integer linear programs (MILPs). Minimal valid inequalities are well understood for a relaxation of an MILP in tableau form where all the nonbasic variables are continuous; they are der
Externí odkaz:
http://arxiv.org/abs/1701.06628
Publikováno v:
Mathematical Programming, vol. 133, 2012, pp. 25--38
In Mathematical Programming 2003, Gomory and Johnson conjecture that the facets of the infinite group problem are always generated by piecewise linear functions. In this paper we give an example showing that the Gomory-Johnson conjecture is false.
Externí odkaz:
http://arxiv.org/abs/1701.06621
Publikováno v:
Mathematics of Operations Research vol. 35 (3), 2010, pp. 704--720
We consider a model that arises in integer programming, and show that all irredundant inequalities are obtained from maximal lattice-free convex sets in an affine subspace. We also show that these sets are polyhedra. The latter result extends a theor
Externí odkaz:
http://arxiv.org/abs/1701.06543
Publikováno v:
Journal of Convex Analysis, vol. 18(2), 2011, pp. 427--432
We show that, given a closed convex set $K$ containing the origin in its interior, the support function of the set $\{y\in K^*: \exists x\in K\mbox{ such that } \langle x,y \rangle =1\}$ is the pointwise smallest among all sublinear functions $\sigma
Externí odkaz:
http://arxiv.org/abs/1701.06550
Publikováno v:
SIAM Journal on Discrete Mathematics, vol. 24 (1), 2010, pp. 158--168
We show that maximal $S$-free convex sets are polyhedra when $S$ is the set of integral points in some rational polyhedron of $\mathbb{R}^n$. This result extends a theorem of Lov\'asz characterizing maximal lattice-free convex sets. Our theorem has i
Externí odkaz:
http://arxiv.org/abs/1701.06540