Zobrazeno 1 - 10
of 51
pro vyhledávání: '"Zalányi László"'
Autor:
Kolumbán, Vilmos József
Publikováno v:
Studia Universitatis Babeș - Bolyai Theologia Reformata Transylvanica / Studia Universitatis Babes-Bolyai - Theologia Reformata Transylvanica. 63(1):97-110
Externí odkaz:
https://www.ceeol.com/search/article-detail?id=646267
Autor:
Vilmos József Kolumbán
Publikováno v:
Studia Universitatis Babeș-Bolyai Theologia Reformata Transylvanica. 63:97-110
Publikováno v:
Math.Comput.Simul. 133 (2017) 326-336
Stochastic kinetic models of genetic expression are able to describe protein fluctuations. A comparative study of the canonical and a feedback model is given here by using stochastic simulation methods. The feedback model is skeleton model implementa
Externí odkaz:
http://arxiv.org/abs/1501.03359
Autor:
Érdi, Péter, Makovi, Kinga, Somogyvári, Zoltán, Strandburg, Katherine, Tobochnik, Jan, Volf, Péter, Zalányi, László
Publikováno v:
Scientometrics: Volume 95, Issue 1 (2013), Page 225-242
The network of patents connected by citations is an evolving graph, which provides a representation of the innovation process. A patent citing another implies that the cited patent reflects a piece of previously existing knowledge that the citing pat
Externí odkaz:
http://arxiv.org/abs/1206.3933
The concepts and methods of Systems Biology are being extended to neuropharmacology, to test and design drugs against neurological and psychiatric disorders. Computational modeling by integrating compartmental neural modeling technique and detailed k
Externí odkaz:
http://arxiv.org/abs/q-bio/0607031
In this paper we present the application of a novel methodology to scientific citation and collaboration networks. This methodology is designed for understanding the governing dynamics of evolving networks and relies on an attachment kernel, a scalar
Externí odkaz:
http://arxiv.org/abs/cond-mat/0605497
This paper reports results of a network theory approach to the study of the United States patent system. We model the patent citation network as a discrete time, discrete space stochastic dynamic system. From data on more than 2 million patents and t
Externí odkaz:
http://arxiv.org/abs/physics/0508132
Autor:
Zalanyi, Laszlo, Csardi, Gabor, Kiss, Tamas, Lengyel, Mate, Warner, Rebecca, Tobochnik, Jan, Erdi, Peter
Publikováno v:
Physical Review E 68 066104 (2003)
In this study we introduce and analyze the statistical structural properties of a model of growing networks which may be relevant to social networks. At each step a new node is added which selects 'k' possible partners from the existing network and j
Externí odkaz:
http://arxiv.org/abs/cond-mat/0305299
Publikováno v:
In Neural Networks September 2017 93:230-239
Autor:
Ashaber, Maria1 (AUTHOR) ashaberma@gmail.com, Zalányi, László2 (AUTHOR), Pálfi, Emese2,3 (AUTHOR), Stuber, István4 (AUTHOR), Kovács, Tamás5 (AUTHOR), Roe, Anna W.6,7,8 (AUTHOR), Friedman, Rob M.6 (AUTHOR), Négyessy, László2 (AUTHOR) negyessy.laszlo@wigner.hu
Publikováno v:
European Journal of Neuroscience. Nov2020, Vol. 52 Issue 9, p4037-4056. 20p. 1 Color Photograph, 2 Black and White Photographs, 4 Charts, 7 Graphs.