Zobrazeno 1 - 10
of 320
pro vyhledávání: '"Zakharov, P. E."'
Publikováno v:
Chaos Solitons Fractals 166, 112951 (2023)
We study numerically the integrable turbulence in the framework of the one-dimensional nonlinear Schrodinger equation (1D-NLSE) of the focusing type using a new approach called the "growing of turbulence". In this approach, we add a small linear pump
Externí odkaz:
http://arxiv.org/abs/2211.06853
We study a 2D potential flow of an ideal fluid with a free surface with decaying conditions at infinity. By using the conformal variables approach, we study a particular solution of Euler equations having a pair of square-root branch points in the co
Externí odkaz:
http://arxiv.org/abs/2109.13159
Autor:
Agafontsev, D. S., Zakharov, V. E.
Publikováno v:
Fiz. Nizk. Temp. 46, 934-939 (2020)
We study numerically the integrable turbulence in the framework of the focusing one-dimensional nonlinear Schrodinger equation using a new method -- the "growing of turbulence". We add to the equation a weak controlled pumping term and start adiabati
Externí odkaz:
http://arxiv.org/abs/2003.10213
Publikováno v:
Proc. Roy. Soc. A, v. 477, 20200811 (2021)
A potential motion of ideal incompressible fluid with a free surface and infinite depth is considered in two-dimensional geometry. A time-dependent conformal mapping of the lower complex half-plane of the auxiliary complex variable $w$ into the area
Externí odkaz:
http://arxiv.org/abs/2003.05085
We consider an extension of the kinetic equation developed by Newell & Zakharov (A.C. Newell and V.E. Zakharov. The role of the generalized Phillips' spectrum in wave turbulence. Phys.Lett.A, 372:4230-4233, 2008). The new equation takes into account
Externí odkaz:
http://arxiv.org/abs/1912.03945
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Lushnikov, P. M., Zakharov, V. E.
Publikováno v:
Water Waves (2020)
We consider the motion of ideal incompressible fluid with free surface. We analyzed the exact fluid dynamics though the time-dependent conformal mapping $z=x+iy=z(w,t)$ of the lower complex half plane of the conformal variable $w$ into the area occup
Externí odkaz:
http://arxiv.org/abs/1911.11609
In this paper we formulate the nonlocal dbar problem dressing method of Manakov and Zakharov [28, 29, 27] for the 4 scaling classes of the 1+1 dimensional Kaup--Broer system [7, 13]. The method for the 1+1 dimensional Kaup--Broer systems are reductio
Externí odkaz:
http://arxiv.org/abs/1909.04804
Autor:
Resio, Donald T., Vincent, Charles L., Tolman, Hendrik L., Chawla, Arun, Rogers, W. Erick, Ardhuin, Fabrice, Babanin, Alexander, Banner, Michael L., Kaihatu, James M., Sheremet, Alexander, Perrie, William, Alves, J. Henrique, Morison, Russel P., Janssen, Tim T., Smidt, Pieter, Hanson, Jeff, Zakharov, Vladimir E., Pushkarev, Andre
This paper reviews the research activities that were carried out under the auspices of the National Ocean Partnership Program (NOPP) to advance research in wind wave modeling and transfer maturing technologies into operational community models. Prima
Externí odkaz:
http://arxiv.org/abs/1908.03601
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.