Zobrazeno 1 - 10
of 23
pro vyhledávání: '"Zak Costello"'
Autor:
Tyler W H Backman, Christina Schenk, Tijana Radivojevic, David Ando, Jahnavi Singh, Jeffrey J Czajka, Zak Costello, Jay D Keasling, Yinjie Tang, Elena Akhmatskaya, Hector Garcia Martin
Publikováno v:
PLoS Computational Biology, Vol 19, Iss 11, p e1011111 (2023)
Metabolic fluxes, the number of metabolites traversing each biochemical reaction in a cell per unit time, are crucial for assessing and understanding cell function. 13C Metabolic Flux Analysis (13C MFA) is considered to be the gold standard for measu
Externí odkaz:
https://doaj.org/article/23460991878e4f2daf19048745ca008c
Publikováno v:
Nature Communications, Vol 11, Iss 1, Pp 1-14 (2020)
Synthetic Biology often lacks the predictive power needed for efficient bioengineering. Here the authors present ART, a machine learning and probabilistic predictive tool to guide synthetic biology design in a systematic fashion.
Externí odkaz:
https://doaj.org/article/455f2430ea684546ad27c6da83f32506
Autor:
Jie Zhang, Søren D. Petersen, Tijana Radivojevic, Andrés Ramirez, Andrés Pérez-Manríquez, Eduardo Abeliuk, Benjamín J. Sánchez, Zak Costello, Yu Chen, Michael J. Fero, Hector Garcia Martin, Jens Nielsen, Jay D. Keasling, Michael K. Jensen
Publikováno v:
Nature Communications, Vol 11, Iss 1, Pp 1-13 (2020)
In metabolic engineering, mechanistic models require prior metabolism knowledge of the chassis strain, whereas machine learning models need ample training data. Here, the authors combine the mechanistic and machine learning models to improve predicti
Externí odkaz:
https://doaj.org/article/12b7d69682c04fc38cfe252ad2aedc1b
Autor:
Maren Wehrs, Mitchell G. Thompson, Deepanwita Banerjee, Jan-Philip Prahl, Norma M. Morella, Carolina A. Barcelos, Jadie Moon, Zak Costello, Jay D. Keasling, Patrick M. Shih, Deepti Tanjore, Aindrila Mukhopadhyay
Publikováno v:
Microbial Cell Factories, Vol 19, Iss 1, Pp 1-15 (2020)
Abstract Background Despite the latest advancements in metabolic engineering for genome editing and characterization of host performance, the successful development of robust cell factories used for industrial bioprocesses and accurate prediction of
Externí odkaz:
https://doaj.org/article/e4bd8130f9524522913cd966fe2e715d
Industrial brewing yeast engineered for the production of primary flavor determinants in hopped beer
Autor:
Charles M. Denby, Rachel A. Li, Van T. Vu, Zak Costello, Weiyin Lin, Leanne Jade G. Chan, Joseph Williams, Bryan Donaldson, Charles W. Bamforth, Christopher J. Petzold, Henrik V. Scheller, Hector Garcia Martin, Jay D. Keasling
Publikováno v:
Nature Communications, Vol 9, Iss 1, Pp 1-10 (2018)
Production of aromatic monoterpene molecules in hop flowers is affected by genetic, environmental, and processing factors. Here, the authors engineer brewer’s yeast for the production of linalool and geraniol, and show pilot-scale beer produced by
Externí odkaz:
https://doaj.org/article/dc211afb41564846a4e2eccbdbf109cd
Autor:
John Ingraham, Max Baranov, Zak Costello, Vincent Frappier, Ahmed Ismail, Shan Tie, Wujie Wang, Vincent Xue, Fritz Obermeyer, Andrew Beam, Gevorg Grigoryan
Three billion years of evolution have produced a tremendous diversity of protein molecules, and yet the full potential of this molecular class is likely far greater. Accessing this potential has been challenging for computation and experiments becaus
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::1986967a55940d5f897f0b7b575d210b
https://doi.org/10.1101/2022.12.01.518682
https://doi.org/10.1101/2022.12.01.518682
Autor:
Michael Krogh Jensen, Jens Nielsen, Jie Zhang, Eduardo Abeliuk, Zak Costello, Andrés Ramirez, Andrés Pérez-Manríquez, Benjamin Sanchez, Søren D. Petersen, Jay D. Keasling, Hector Garcia Martin, Michael J. Fero, Tijana Radivojevic, Yu Chen
Publikováno v:
Nature Communications, Vol 11, Iss 1, Pp 1-13 (2020)
Nature Communications
Nature communications, vol 11, iss 1
Zhang, J, Petersen, S D, Radivojevic, T, Ramirez, A, Pérez-Manríquez, A, Abeliuk, E, Sánchez, B J, Costello, Z, Chen, Y, Fero, M J, Martin, H G, Nielsen, J, Keasling, J D & Jensen, M K 2020, ' Combining mechanistic and machine learning models for predictive engineering and optimization of tryptophan metabolism ', Nature Communications, vol. 11, no. 1, 4880 . https://doi.org/10.1038/s41467-020-17910-1
Nature Communications
Nature communications, vol 11, iss 1
Zhang, J, Petersen, S D, Radivojevic, T, Ramirez, A, Pérez-Manríquez, A, Abeliuk, E, Sánchez, B J, Costello, Z, Chen, Y, Fero, M J, Martin, H G, Nielsen, J, Keasling, J D & Jensen, M K 2020, ' Combining mechanistic and machine learning models for predictive engineering and optimization of tryptophan metabolism ', Nature Communications, vol. 11, no. 1, 4880 . https://doi.org/10.1038/s41467-020-17910-1
Through advanced mechanistic modeling and the generation of large high-quality datasets, machine learning is becoming an integral part of understanding and engineering living systems. Here we show that mechanistic and machine learning models can be c
Publikováno v:
Nature communications, vol 11, iss 1
Nature Communications, Vol 11, Iss 1, Pp 1-14 (2020)
Nature Communications
BIRD: BCAM's Institutional Repository Data
instname
Nature Communications, Vol 11, Iss 1, Pp 1-14 (2020)
Nature Communications
BIRD: BCAM's Institutional Repository Data
instname
Synthetic biology allows us to bioengineer cells to synthesize novel valuable molecules such as renewable biofuels or anticancer drugs. However, traditional synthetic biology approaches involve ad-hoc engineering practices, which lead to long develop
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::408b8bb9a6f5352c5803a3ffeadc41c8
https://escholarship.org/uc/item/1j45r7fj
https://escholarship.org/uc/item/1j45r7fj
Autor:
Aindrila Mukhopadhyay, Maren Wehrs, Carolina Barcelos, Jay D. Keasling, Jadie Moon, Mitchell G. Thompson, Zak Costello, Deepanwita Banerjee, Patrick M. Shih, Jan-Philip Prahl, Norma M. Morella, Deepti Tanjore
Publikováno v:
Microbial cell factories, vol 19, iss 1
Microbial Cell Factories
Microbial Cell Factories, Vol 19, Iss 1, Pp 1-15 (2020)
Microbial Cell Factories
Microbial Cell Factories, Vol 19, Iss 1, Pp 1-15 (2020)
Background Despite the latest advancements in metabolic engineering for genome editing and characterization of host performance, the successful development of robust cell factories used for industrial bioprocesses and accurate prediction of the behav
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::27840ba9399929b983819dfd75f33b75
https://escholarship.org/uc/item/5z05g1xt
https://escholarship.org/uc/item/5z05g1xt
Autor:
Mitchell G. Thompson, Jay D. Keasling, Zak Costello, Pablo Cruz-Morales, Edward E. K. Baidoo, Luis E. Valencia, Jesus F. Barajas, Aindrila Mukhopadhyay, Matthew R. Incha, Megan E. Garber, Allison N. Pearson, Hector Garcia Martin, Nima Sedaghatian
Publikováno v:
ACS synthetic biology, vol 9, iss 1
Thompson, M G, Pearson, A N, Barajas, J F, Cruz-Morales, P, Sedaghatian, N, Costello, Z, Garber, M E, Incha, M R, Valencia, L E, Baidoo, E E K, Martin, H G, Mukhopadhyay, A & Keasling, J D 2020, ' Identification, Characterization, and Application of a Highly Sensitive Lactam Biosensor from Pseudomonas putida ', ACS Synthetic Biology, vol. 9, no. 1, pp. 53-62 . https://doi.org/10.1021/acssynbio.9b00292
Thompson, M G, Pearson, A N, Barajas, J F, Cruz-Morales, P, Sedaghatian, N, Costello, Z, Garber, M E, Incha, M R, Valencia, L E, Baidoo, E E K, Martin, H G, Mukhopadhyay, A & Keasling, J D 2020, ' Identification, Characterization, and Application of a Highly Sensitive Lactam Biosensor from Pseudomonas putida ', ACS Synthetic Biology, vol. 9, no. 1, pp. 53-62 . https://doi.org/10.1021/acssynbio.9b00292
Caprolactam is an important polymer precursor to nylon traditionally derived from petroleum and produced on a scale of 5 million tons per year. Current biological pathways for the production of caprolactam are inefficient with titers not exceeding 2
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::eb103f6025093798dba71be21c0625bb
https://escholarship.org/uc/item/048768s8
https://escholarship.org/uc/item/048768s8