Zobrazeno 1 - 10
of 184
pro vyhledávání: '"Zajączkowski, Wojciech"'
The nonhomogeneous Navier-Stokes equations are considered in a cylindrical domain in ${\mathbb R}^3$, parallel to the $x_3$-axis with large inflow and outflow on the top and the bottom. Moreover, on the lateral part of the cylinder the slip boundary
Externí odkaz:
http://arxiv.org/abs/2402.04793
Autor:
Zajaczkowski, Wojciech M.
We prove existence of global regular axially-symmetric solutions to the Navier-Stokes equations in a cylindrical domain. We assume the periodic boundary conditions on the top and the bottom of the cylinder, but on the lateral part we assume vanishing
Externí odkaz:
http://arxiv.org/abs/2304.00856
Axially symmetric solutions to the Navier-Stokes equations in a bounded cylinder are considered. On the boundary the normal component of the velocity and he angular components of the velocity and vorticity are assumed to vanish. If the norm of the in
Externí odkaz:
http://arxiv.org/abs/2302.00730
Higher-order estimates in weighted Sobolev spaces for solutions to a singular elliptic equation for the stream function in an axially symmetric cylinder are provided. These estimates are essential for investigating the existence of axially symmetric
Externí odkaz:
http://arxiv.org/abs/2210.15729
The local existence of solutions to nonhomogeneous Navier-Stokes equations in cylindrical domains with arbitrary large flux is demonstrated. The existence is proved by the method of successive approximations. To show the existence with the lowest pos
Externí odkaz:
http://arxiv.org/abs/2111.10182
Publikováno v:
J. Math. Fluid Mech. (2022) 24:64
The existence of solutions to some initial-boundary value problem for the Stokes system is proved. The result is shown in Sobolev-Slobodetskii spaces such that the velocity belongs to $W_r^{2+\sigma,1+\sigma/2}(\Omega^T)$ and gradient of pressure to
Externí odkaz:
http://arxiv.org/abs/2111.08083
Autor:
Zajaczkowski, Wojciech M.
We consider the Navier-Stokes equations in a bounded domain with periodic boundary conditions. Let $V=V(x,t)$ be the velocity of the fluid. The aim of this paper is to prove the bound $\|V(t)\|_{H^1}\le c$ for any $t\in\mathbb{R}_+$, where $c$ depend
Externí odkaz:
http://arxiv.org/abs/2009.07631
Autor:
Zajączkowski, Wojciech M.1,2 (AUTHOR) wz@impan.pl
Publikováno v:
Mathematics (2227-7390). Jan2024, Vol. 12 Issue 2, p263. 50p.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.