Zobrazeno 1 - 10
of 133
pro vyhledávání: '"Zaitsev, Andrei"'
Autor:
Zaitsev, Andrei Yu.
Publikováno v:
Zapiski Nauchnykh Seminarov POMI, 2023, v.525, 86-95 (in Russian)
Let $X_1,\dots, X_n,\dots$ be i.i.d.\ $d$-dimensional random vectors with common distribution $F$. Then $S_n = X_1+\dots+X_n$ has distribution $F^n$ (degree is understood in the sense of convolution). Let $$ \rho_{\mathcal{C}_d}(F,G) = \sup_A |F\{A\}
Externí odkaz:
http://arxiv.org/abs/2310.20283
Autor:
Götze, Friedrich, Zaitsev, Andrei Yu.
Let $X_1,\ldots,X_n$ be independent identically distributed random variables. In this paper we study the behavior of concentration functions of weighted sums $\sum_{k=1}^{n}X_ka_k $ with respect to the arithmetic structure of coefficients~$a_k$ in th
Externí odkaz:
http://arxiv.org/abs/2304.02268
Autor:
Götze, Friedrich, Zaitsev, Andrei Yu.
Publikováno v:
Mathematics, 2022, 10(10), 1740
The paper deals with studying a connection of the Littlewood--Offord problem with estimating the concentration functions of some symmetric infinitely divisible distributions.
Comment: 7 pages. arXiv admin note: substantial text overlap with arXi
Comment: 7 pages. arXiv admin note: substantial text overlap with arXi
Externí odkaz:
http://arxiv.org/abs/2112.12574
Autor:
Götze, Friedrich, Zaitsev, Andrei Yu.
Publikováno v:
Zapiski Nauchnykh Seminarov POMI, 2021, v.501, 118-125 (in Russian)
The aim of the present work is to provide a supplement to the authors' paper (2018). It is shown that our results on the approximation of distributions of sums of independent summands by the accompanying compound Poisson laws and the estimates of the
Externí odkaz:
http://arxiv.org/abs/2109.11845
Autor:
Götze, Friedrich, Zaitsev, Andrei Yu.
Publikováno v:
Theory Probab. Appl., v. 62, no.1 (2022), 3-22 (in Russian); English translation Theory Probab. Appl. 67, No. 1, 1-16 (2022)
The aim of the present work is to show that recent results of the authors on the approximation of distributions of sums of independent summands by the infinitely divisible laws on convex polyhedra can be shown via an alternative class of approximatin
Externí odkaz:
http://arxiv.org/abs/2006.01942
Publikováno v:
Zapiski Nauchnykh Seminarov POMI, 2019, v.486, 71-85 (in Russian);English translation in J. Math. Sci. (N. Y.), 258 (2021), 782-792
The aim of the present work is to show that the results obtained earlier on the approximation of distributions of sums of independent summands by infinitely divisible laws may be transferred to the estimation of the closeness of distributions on conv
Externí odkaz:
http://arxiv.org/abs/1912.13296
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Götze, Friedrich, Zaitsev, Andrei Yu.
Publikováno v:
Zapiski Nauchnykh Seminarov POMI, 2018, v.474, 108-117 (in Russian);English translation in J. Math. Sci. (N. Y.), 251 (2020), 67-73
The aim of the present work is to show that the results obtained earlier on the approximation of distributions of sums of independent summands by the accompanying compound Poisson laws and the estimates of the proximity of sequential convolutions of
Externí odkaz:
http://arxiv.org/abs/1812.07473
Autor:
Zaitsev, Andrei Yu.
Publikováno v:
Vestnik St. Petersburg University: Mathematics 2005, no. 4, 21-33 (in Russian); English translation in: Vestnik St. Petersburg University: Mathematics, 38:4 (2005), 15-24
The rate of normal approximation for the integral norm of kernel density estimators is investigated in the case of densities with power-type singularities. The quantities from the formulations of published results by the author are estimated. By assu
Externí odkaz:
http://arxiv.org/abs/1805.01770
Autor:
Götze, Friedrich, Zaitsev, Andrei Yu.
Publikováno v:
Zapiski Nauchnykh Seminarov POMI, 2017, v.466, 109-119 (in Russian); English translation in J. Math. Sci. (N. Y.), 244 (2020), 771-778n
The aim of the present work is to show that the results obtained earlier on the approximation of distributions of sums of independent terms by the accompanying compound Poisson laws may be interpreted as rather sharp quantitative estimates for the cl
Externí odkaz:
http://arxiv.org/abs/1802.06638