Zobrazeno 1 - 7
of 7
pro vyhledávání: '"Zainab Esa"'
Autor:
Zainab Esa Abdulnaby
Publikováno v:
Baghdad Science Journal, Vol 17, Iss 4 (2020)
In this paper, several conditions are put in order to compose the sequence of partial sums , and of the fractional operators of analytic univalent functions , and of bounded turning which are bounded turning too.
Externí odkaz:
https://doaj.org/article/ad01e08786f143a783a031b96596be8e
Autor:
Zainab Esa Abdul Naby
Publikováno v:
مجلة جامعة الانبار للعلوم الصرفة, Vol 7, Iss 2, Pp 1-4 (2014)
In this work, we introduceBernst-ein linear positive operatorsB_(n,k) (f,x) in the space of all continuous functionsC_I where I=[0,1] with some properties of this operator so to find the strongapproxi- mation of continuous functions with the averaged
Externí odkaz:
https://doaj.org/article/3bb5dcbeab824a29aed24207566e2975
Publikováno v:
Baghdad Science Journal, Vol 17, Iss 1 (2020)
A new efficient Two Derivative Runge-Kutta method (TDRK) of order five is developed for the numerical solution of the special first order ordinary differential equations (ODEs). The new method is derived using the property of First Same As Last (FSAL
Autor:
Zainab Esa Abdul Naby
Publikováno v:
Journal of University of Anbar for Pure Science. 7:1-4
Publikováno v:
AIP Conference Proceedings.
In this paper, we introduce a new fractional integral operator defined by modified fractional derivative Tremblay operator of analytic functions and show that the univalence of this integral operator is preserved under certain sufficient conditions i
In this paper, by making use of a certain family of fractional derivative operators in the complex domain, we introduce and investigate a new subclass $\mathcal{P}_{\tau,\mu}(k,\delta,\gamma)$ of analytic and univalent functions in the open unit disk
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::f2999be9ea27f7710b06399ec61d38ff
Publikováno v:
Journal of Physics: Conference Series; 2019, Vol. 1294 Issue 3, p1-1, 1p