Zobrazeno 1 - 10
of 247
pro vyhledávání: '"Zaidenberg M"'
Publikováno v:
Adv. Math. 437 (2024), article 109449
It was shown in [S. Kaliman, M. Zaidenberg, Gromov ellipticity of cones over projective manifolds, Math. Res. Lett. (to appear), arXiv:2303.02036 (2023)] that the affine cones over flag manifolds and rational smooth projective surfaces are elliptic i
Externí odkaz:
http://arxiv.org/abs/2304.08608
Publikováno v:
In Advances in Mathematics February 2024 437
Autor:
Arzhantsev, I., Zaidenberg, M.
Publikováno v:
International Mathematics Research Notices (IMRN) 2022 (2022), no. 11, 8162-8195
Given a toric affine algebraic variety $X$ and a collection of one-parameter unipotent subgroups $U_1,\ldots,U_s$ of $\mathop{\rm Aut}(X)$ which are normalized by the torus acting on $X$, we show that the group $G$ generated by $U_1,\ldots,U_s$ verif
Externí odkaz:
http://arxiv.org/abs/2003.00037
Autor:
Ciliberto, Ciro, Zaidenberg, M
We provide enumerative formulas for the degrees of varieties parameterizing hypersurfaces and complete intersections which contain pro-jective subspaces and conics. Besides, we find all cases where the Fano scheme of the general complete intersection
Externí odkaz:
http://arxiv.org/abs/1903.11294
Publikováno v:
Adv. Math. 351 (2019), 1-32
An affine algebraic variety X of dimension at least 2 is called flexible if the subgroup SAut(X) in Aut(X) generated by the one-parameter unipotent subgroups acts m-transitively on reg(X) for any m $\ge$ 1. In the previous paper we proved that any no
Externí odkaz:
http://arxiv.org/abs/1803.10620
Let $D$ be a very general curve of degree $d=2\ell-\epsilon$ in $\mathbb{P}^2$, with $\epsilon\in \{0,1\}$. Let $\Gamma \subset \mathbb{P}^2$ be an integral curve of geometric genus $g$ and degree $m$, $\Gamma \neq D$, and let $\nu: C\to \Gamma$ be t
Externí odkaz:
http://arxiv.org/abs/1704.00320
Publikováno v:
In Advances in Mathematics 31 July 2019 351:1-32
Publikováno v:
In: Birational geometry, rational curves, and arithmetic, Springer, 2013, 1-13
In this note we survey recent results on automorphisms of affine algebraic varieties, infinitely transitive group actions and flexibility. We present related constructions and examples, and discuss geometric applications and open problems.
Comme
Comme
Externí odkaz:
http://arxiv.org/abs/1210.6937
Autor:
Arzhantsev, I., Zaidenberg, M.
Publikováno v:
In: Affine Algebraic Geometry, World Scientific Publ., 2013, 1-41
We show that every irreducible, simply connected curve on a toric affine surface X over the field of complex numbers is an orbit closure of a multiplicative group action on X. It follows that up to the action of the automorphism group Aut(X) there ar
Externí odkaz:
http://arxiv.org/abs/1110.3028
Publikováno v:
Duke Math. J. 162, no. 4 (2013), 767-823
Given an affine algebraic variety X of dimension at least 2, we let SAut (X) denote the special automorphism group of X i.e., the subgroup of the full automorphism group Aut (X) generated by all one-parameter unipotent subgroups. We show that if SAut
Externí odkaz:
http://arxiv.org/abs/1011.5375