Zobrazeno 1 - 10
of 16
pro vyhledávání: '"Zachery Oestreicher"'
Autor:
Zachery Oestreicher, Carmen Valverde-Tercedor, Eric Mumper, Lumarie Pérez-Guzmán, Nadia N. Casillas-Ituarte, Concepcion Jimenez-Lopez, Dennis A. Bazylinski, Steven K. Lower, Brian H. Lower
Publikováno v:
Crystals, Vol 11, Iss 8, p 874 (2021)
Magnetotactic bacteria (MTB) biomineralize intracellular magnetite (Fe3O4) crystals surrounded by a magnetosome membrane (MM). The MM contains membrane-specific proteins that control Fe3O4 mineralization in MTB. Previous studies have demonstrated tha
Externí odkaz:
https://doaj.org/article/e6f25c7ef4674d33a4b1d3152db15efa
Autor:
Azuma Taoka, Ayako Kiyokawa, Chika Uesugi, Yousuke Kikuchi, Zachery Oestreicher, Kaori Morii, Yukako Eguchi, Yoshihiro Fukumori
Publikováno v:
mBio, Vol 8, Iss 4 (2017)
ABSTRACT Magnetotactic bacteria are a unique group of bacteria that synthesize a magnetic organelle termed the magnetosome, which they use to assist with their magnetic navigation in a specific type of bacterial motility called magneto-aerotaxis. Cyt
Externí odkaz:
https://doaj.org/article/74aa97f87c6247a49ef1aa48dd506d0e
Autor:
Zachery Oestreicher, Lumarie Pérez-Guzmán, Nadia N. Casillas-Ituarte, Michaela R. Hostetler, Eric Mumper, Dennis A. Bazylinski, Steven K. Lower, Brian H. Lower
Publikováno v:
ACS Earth and Space Chemistry. 6:530-540
Autor:
Steven K. Lower, Concepcion Jimenez-Lopez, Brian H. Lower, Carmen Valverde-Tercedor, Eric Mumper, Zachery Oestreicher, Lumarie Pérez-Guzmán, Dennis A. Bazylinski, Nadia N. Casillas-Ituarte
Publikováno v:
Digibug. Repositorio Institucional de la Universidad de Granada
instname
Crystals; Volume 11; Issue 8; Pages: 874
Crystals, Vol 11, Iss 874, p 874 (2021)
instname
Crystals; Volume 11; Issue 8; Pages: 874
Crystals, Vol 11, Iss 874, p 874 (2021)
Magnetotactic bacteria (MTB) biomineralize intracellular magnetite (Fe3O4 ) crystals surrounded by a magnetosome membrane (MM). The MM contains membrane-specific proteins that control Fe3O4 mineralization in MTB. Previous studies have demonstrated th
Autor:
Hoang Viet Nguyen, Azuma Taoka, Yoshihiro Fukumori, Zachery Oestreicher, Hiroshi Minamide, Emi Suzuki, Hiroshi Endoh
Publikováno v:
Biochemistry and Biophysics Reports
Magnetosomes are membrane-enveloped bacterial organelles containing nano-sized magnetic particles, and function as a cellular magnetic sensor, which assist the cells to navigate and swim along the geomagnetic field. Localized with each magnetosome is
Autor:
Zachery Oestreicher, Dennis A. Bazylinski, Steven K. Lower, Brian H. Lower, Eric Mumper, Carol Gassman
Publikováno v:
Journal of Materials Research. 31:527-535
Magnetotactic bacteria mineralize nanometer-size crystals of magnetite (Fe3O4) through a series of protein-mediated reactions that occur inside of organelles called magnetosomes. Mms6 is a transmembrane protein thought to play a key role in magnetite
Publikováno v:
Microbiology. 160:2226-2234
Magnetotactic bacteria (MTB) are widespread aquatic bacteria, and are a phylogenetically, physiologically and morphologically heterogeneous group, but they all have the ability to orientate and move along the geomagnetic field using intracellular mag
Publikováno v:
FEMS Microbiology Letters. 358:21-29
Magnetotactic bacteria use a specific set of conserved proteins to biomineralize crystals of magnetite or greigite within their cells in organelles called magnetosomes. Using Magnetospirillum magneticum AMB-1, we examined one of the magnetotactic bac
Autor:
Steven K. Lower, Roberto D. Lins, Michael F. Hochella, Tjerk P. Straatsma, Brian H. Lower, Liang Shi, Zachery Oestreicher
Publikováno v:
Environmental Science & Technology. 42:3821-3827
Phage-display technology was used to evolve peptides that selectively bind to the metal-oxide hematite (Fe2O3) from a library of approximately 3 billion different polypeptides. The sequences of these peptides contained the highly conserved amino acid
Publikováno v:
Micron (Oxford, England : 1993). 72
Bacteria have been studied using different microscopy methods for many years. Recently, the developments of high-speed atomic force microscopy have opened the doors to study bacteria in new ways due to the fact that it uses much less force on the sam