Zobrazeno 1 - 10
of 11
pro vyhledávání: '"Zachary B Haiman"'
Autor:
Anand V Sastry, Yuan Yuan, Saugat Poudel, Kevin Rychel, Reo Yoo, Cameron R Lamoureux, Gaoyuan Li, Joshua T Burrows, Siddharth Chauhan, Zachary B Haiman, Tahani Al Bulushi, Yara Seif, Bernhard O Palsson, Daniel C Zielinski
Publikováno v:
PLoS Computational Biology, Vol 20, Iss 10, p e1012546 (2024)
Public gene expression databases are a rapidly expanding resource of organism responses to diverse perturbations, presenting both an opportunity and a challenge for bioinformatics workflows to extract actionable knowledge of transcription regulatory
Externí odkaz:
https://doaj.org/article/012b0c0d41224b3b907edb195e4abdcc
Publikováno v:
PLoS Computational Biology, Vol 17, Iss 1, p e1008208 (2021)
Mathematical models of metabolic networks utilize simulation to study system-level mechanisms and functions. Various approaches have been used to model the steady state behavior of metabolic networks using genome-scale reconstructions, but formulatin
Externí odkaz:
https://doaj.org/article/3846a1961c114a0ab1c5d9e49137eaf3
Publikováno v:
PLoS Computational Biology, Vol 14, Iss 8, p e1006356 (2018)
Allosteric regulation has traditionally been described by mathematically-complex allosteric rate laws in the form of ratios of polynomials derived from the application of simplifying kinetic assumptions. Alternatively, an approach that explicitly des
Externí odkaz:
https://doaj.org/article/236d2f241ebb48b8a06c628e29c56c0f
Autor:
Reo Yoo, Al Bulushi T, Zachary B. Haiman, Bernhard O. Palsson, Anand V. Sastry, Siddharth Chauhan, Saugat Poudel, Cameron R. Lamoureux, Yara Seif, Kevin Rychel
We are firmly in the era of biological big data. Millions of omics datasets are publicly accessible and can be employed to support scientific research or build a holistic view of an organism. Here, we introduce a workflow that converts all public gen
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::2893d352275b349083d34729e19ba39b
https://doi.org/10.1101/2021.07.01.450581
https://doi.org/10.1101/2021.07.01.450581
Autor:
Colton J. Lloyd, Zachary B. Haiman, Daniel C. Zielinski, Martin J. Lercher, Nathan Mih, Abdelmoneim Amer Desouki, David Heckmann, Yuanchi Ha, Bernhard O. Palsson
Publikováno v:
Nature Communications, Vol 9, Iss 1, Pp 1-10 (2018)
Heckmann, D, Lloyd, C J, Mih, N, Ha, Y, Zielinski, D C, Haiman, Z B, Desouki, A A, Lercher, M J & Palsson, B O 2018, ' Machine learning applied to enzyme turnover numbers reveals protein structural correlates and improves metabolic models ', Nature Communications, vol. 9, 5252 . https://doi.org/10.1038/s41467-018-07652-6
Nature communications, vol 9, iss 1
Nature Communications
Heckmann, D, Lloyd, C J, Mih, N, Ha, Y, Zielinski, D C, Haiman, Z B, Desouki, A A, Lercher, M J & Palsson, B O 2018, ' Machine learning applied to enzyme turnover numbers reveals protein structural correlates and improves metabolic models ', Nature Communications, vol. 9, 5252 . https://doi.org/10.1038/s41467-018-07652-6
Nature communications, vol 9, iss 1
Nature Communications
Knowing the catalytic turnover numbers of enzymes is essential for understanding the growth rate, proteome composition, and physiology of organisms, but experimental data on enzyme turnover numbers is sparse and noisy. Here, we demonstrate that machi
Publikováno v:
Haiman, Z B, Zielinski, D C, Koike, Y, Yurkovich, J T & Palsson, B O 2021, ' MASSpy : Building, simulating, and visualizing dynamic biological models in Python using mass action kinetics ', PLOS Computational Biology, vol. 17, no. 1, e1008208 . https://doi.org/10.1371/JOURNAL.PCBI.1008208
PLoS computational biology, vol 17, iss 1
PLoS Computational Biology, Vol 17, Iss 1, p e1008208 (2021)
PLoS Computational Biology
PLoS computational biology, vol 17, iss 1
PLoS Computational Biology, Vol 17, Iss 1, p e1008208 (2021)
PLoS Computational Biology
Mathematical models of metabolic networks utilize simulation to study system-level mechanisms and functions. Various approaches have been used to model the steady state behavior of metabolic networks using genome-scale reconstructions, but formulatin
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::51c47fc0ba90b79b97b48033d6a08b9f
https://orbit.dtu.dk/en/publications/354cf451-cd47-4877-8826-b0c9badb1122
https://orbit.dtu.dk/en/publications/354cf451-cd47-4877-8826-b0c9badb1122
Mathematical models of metabolic networks utilize simulation to study system-level mechanisms and functions. Various approaches have been used to model the steady state behavior of metabolic networks using genome-scale reconstructions, but formulatin
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::5cdc410e63f4c34c1affc9e6c660b96b
https://doi.org/10.1101/2020.07.31.230334
https://doi.org/10.1101/2020.07.31.230334
Publikováno v:
PLoS Computational Biology
PLoS Computational Biology, Vol 14, Iss 8, p e1006356 (2018)
PLoS Computational Biology, Vol 14, Iss 8, p e1006356 (2018)
Allosteric regulation has traditionally been described by mathematically-complex allosteric rate laws in the form of ratios of polynomials derived from the application of simplifying kinetic assumptions. Alternatively, an approach that explicitly des
The allosteric regulation of metabolic enzymes plays a key role in controlling the flux through metabolic pathways. The activity of such enzymes is traditionally described by allosteric rate laws in complex kinetic models of metabolic network functio
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::bbd5596b6b1982c504da9382d07a4fe0
https://doi.org/10.1101/227058
https://doi.org/10.1101/227058
Publikováno v:
mSystems, Vol 9, Iss 2 (2024)
ABSTRACT Understanding the dynamics of biological systems in evolving environments is a challenge due to their scale and complexity. Here, we present a computational framework for the timescale decomposition of biochemical reaction networks to distil
Externí odkaz:
https://doaj.org/article/42278b1b5367444ea9b472a346c84c03