Zobrazeno 1 - 10
of 16
pro vyhledávání: '"Zachary, Ulissi"'
Autor:
Anuroop Sriram, Sihoon Choi, Xiaohan Yu, Logan M. Brabson, Abhishek Das, Zachary Ulissi, Matt Uyttendaele, Andrew J. Medford, David S. Sholl
Publikováno v:
ACS Central Science, Vol 10, Iss 5, Pp 923-941 (2024)
Externí odkaz:
https://doaj.org/article/e447ff80345c49028aa47749beb657df
Publikováno v:
Journal of Chemical Information and Modeling. 63:2427-2437
Autor:
Janice Lan, Aini Palizhati, Muhammed Shuaibi, Brandon Wood, Brook Wander, Abhishek Das, Matt Uyttendaele, C. Zitnick, Zachary Ulissi
Computational catalysis is playing an increasingly significant role in the design of catalysts across a wide range of applications. A common task for many computational methods is the need to accurately compute the minimum binding energy — the adso
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::2ee6822669792e8b6ff064c30909eaa0
https://doi.org/10.21203/rs.3.rs-2592476/v1
https://doi.org/10.21203/rs.3.rs-2592476/v1
Autor:
Jehad Abed, Javier Heras-Domingo, Mingchuan Luo, Rohan Sanspeur, Wajdi Alnoush, Debora Meira, Hsiao-Tsu Wang, Jian Wang, Jigang Zhou, Daojin Zhou, Khalid Fatih, Drew Higgins, Zachary Ulissi, Edward Sargent
Further improvements in the performance and cost-effectiveness of water electrolyzers are urgently needed to accelerate decarbonization of hydrogen production. Iridium-free oxygen evolution reaction (OER) electrocatalysts are needed that are active a
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::a1413f85a952ae6bdd5e23c741f6b2a7
https://doi.org/10.21203/rs.3.rs-2410178/v1
https://doi.org/10.21203/rs.3.rs-2410178/v1
The Sabatier principle is of fundamental importance to computational catalyst discovery, saving researchers time and expense by predicting catalytic activity \emph{in silico} at scale. However, as polycrystalline and nanoscale catalysts increasingly
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::f3bd25a773637c9c92bf60aae7fd02b8
https://doi.org/10.26434/chemrxiv-2022-fkj67
https://doi.org/10.26434/chemrxiv-2022-fkj67
Autor:
Zachary Ulissi
Publikováno v:
Proceedings of the nanoGe Spring Meeting 2022.
Machine learning approaches have the potential to approximate Density Functional Theory (DFT) for atomistic simulations in a computationally efficient manner, which could dramatically increase the impact of computational simulations on real-world pro
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::49d2bbfdd151aca2ea141d180e8dea85
Autor:
Richard Tran, Janice Lan, Muhammed Shuaibi, Brandon M. Wood, Siddharth Goyal, Abhishek Das, Javier Heras-Domingo, Adeesh Kolluru, Ammar Rizvi, Nima Shoghi, Anuroop Sriram, Félix Therrien, Jehad Abed, Oleksandr Voznyy, Edward H. Sargent, Zachary Ulissi, C. Lawrence Zitnick
The development of machine learning models for electrocatalysts requires a broad set of training data to enable their use across a wide variety of materials. One class of materials that currently lacks sufficient training data is oxides, which are cr
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::6d071f29a5d51a9516c9a6213f3abc17
Publikováno v:
SSRN Electronic Journal.
Publikováno v:
Applied Catalysis B: Environmental. 320:121959
The Sabatier principle is of fundamental importance to computational catalyst discovery, saving researchers time and expense by predicting catalytic activity in silico at scale. However, as polycrystalline and nanoscale catalysts increasingly dominat