Zobrazeno 1 - 10
of 93
pro vyhledávání: '"ZHONGXIAO JIA"'
Autor:
JINZHI HUANG1 jzhuang21@suda.edu.cn, ZHONGXIAO JIA2 jiazx@tsinghua.edu.cn
Publikováno v:
SIAM Journal on Matrix Analysis & Applications. 2024, Vol. 45 Issue 2, p1114-1147. 34p.
Autor:
ZHONGXIAO JIA1 jiazx@tsinghua.edu.cn, KAILIANG ZHANG1 zkl18@mails.tsinghua.edu.cn
Publikováno v:
SIAM Journal on Matrix Analysis & Applications. 2024, Vol. 45 Issue 1, p24-58. 35p.
Autor:
Jinzhi Huang, Zhongxiao Jia
Publikováno v:
Journal of Scientific Computing. 94
A Cross-Product Free (CPF) Jacobi-Davidson (JD) type method is proposed to compute a partial generalized singular value decomposition (GSVD) of a large regular matrix pair $(A,B)$. It implicitly solves the mathematically equivalent generalized eigenv
Autor:
Jinzhi Huang, Zhongxiao Jia
Publikováno v:
Journal of Scientific Computing. 93
Two harmonic extraction based Jacobi--Davidson (JD) type algorithms are proposed to compute a partial generalized singular value decomposition (GSVD) of a large regular matrix pair. They are called cross product-free (CPF) and inverse-free (IF) harmo
Autor:
Zhongxiao Jia Fuhui Lai
Publikováno v:
CSIAM Transactions on Applied Mathematics. 2:297-312
Autor:
Zhongxiao Jia, Haibo Li
Publikováno v:
Numerical Algorithms. 88:965-992
The joint bidiagonalization(JBD) process is a useful algorithm for the computation of the generalized singular value decomposition(GSVD) of a matrix pair. However, it always suffers from rounding errors, which causes the Lanczos vectors to loss their
Autor:
Zhongxiao Jia, Fa Wang
Publikováno v:
SIAM Journal on Optimization. 31:887-914
Solving the trust-region subproblem (TRS) plays a key role in numerical optimization and many other applications. The generalized Lanczos trust-region (GLTR) method is a well-known Lanczos type approach for solving a large-scale TRS. The method proje
Autor:
ZHONGXIAO JIA1 jiazx@tsinghua.edu.cn, HAIBO LI1 lee12358@163.com
Publikováno v:
SIAM Journal on Matrix Analysis & Applications. 2023, Vol. 44 Issue 1, p382-407. 26p.
Autor:
Zhongxiao Jia, Yanfei Yang
Publikováno v:
Applied Numerical Mathematics. 157:159-177
Based on the joint bidiagonalization (JBD) process of the matrix pair { A , L } , an iterative regularization algorithm, called JBDQR, is proposed and developed for large scale linear discrete ill-posed problems in general-form Tikhonov regularizatio
Autor:
ZHONGXIAO JIA1 jiazx@tsinghua.edu.cn
Publikováno v:
SIAM Journal on Matrix Analysis & Applications. 2022, Vol. 43 Issue 2, p584-604. 21p.