Zobrazeno 1 - 10
of 207
pro vyhledávání: '"ZHANG Yaxian"'
Klein and Randic (1985) proposed the concept of forcing number, which has an application in chemical resonance theory. Let $G$ be a graph with a perfect matching $M$. The forcing number of $M$ is the smallest cardinality of a subset of $M$ that is co
Externí odkaz:
http://arxiv.org/abs/2412.06331
A connected graph G is matching covered if every edge lies in some perfect matching of G. Lovasz proved that every matching covered graph G can be uniquely decomposed into a list of bricks (nonbipartite) and braces (bipartite) up to multiple edges. D
Externí odkaz:
http://arxiv.org/abs/2411.17295
In a region R consisting of unit squares, a (domino) tiling is a collection of dominoes (the union of two adjacent squares) which pave fully the region. The flip graph of R is defined on the set of all tilings of R where two tilings are adjacent if w
Externí odkaz:
http://arxiv.org/abs/2307.08332
Publikováno v:
In Journal of the Franklin Institute December 2024 361(18)
Publikováno v:
In Engineering Applications of Artificial Intelligence 1 February 2025 141
Publikováno v:
In Applied Mathematics and Computation 1 August 2024 474
Autor:
Zhang, Yaxian, Zhang, Heping
Publikováno v:
Discrete Appl. Math. 311 (2022) 85-96
The global forcing number of a graph G is the minimal cardinality of an edge subset discriminating all perfect matchings of G, denoted by gf(G). For any perfect matching M of G, the minimal cardinality of an edge subset S in E(G)-M such that G-S has
Externí odkaz:
http://arxiv.org/abs/2009.05746
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
In Advanced Powder Technology February 2023 34(2)
Autor:
Chang, Di, Zhang, Yaxian
Publikováno v:
In Journal of Environmental Management 1 January 2023 325 Part B