Zobrazeno 1 - 10
of 8 019
pro vyhledávání: '"ZHANG JianJun"'
We investigate the existence of normalized solutions for the following nonlinear fractional Choquard equation: $$ (-\Delta)^s u+V(\epsilon x)u=\lambda u+\left(I_\alpha *|u|^q\right)|u|^{q-2} u+\left(I_\alpha *|u|^p\right)|u|^{p-2} u, \quad x \in \mat
Externí odkaz:
http://arxiv.org/abs/2411.01476
There is an ongoing and dedicated effort to estimate bounds on the generalization error of deep learning models, coupled with an increasing interest with practical metrics that can be used to experimentally evaluate a model's ability to generalize. T
Externí odkaz:
http://arxiv.org/abs/2409.01498
Autor:
You, Song, Zhang, Jianjun
We are concerned with the following coupled Schr\"{o}dinger system with Hardy potential in the critical case \begin{equation*} \begin{cases} -\Delta u_{i}-\frac{\lambda_{i}}{|x|^2}u_{i}=|u_i|^{2^*-2}u_i+\sum_{j\neq i}^{3}\beta_{ij}|u_{j}|^{\frac{2^*}
Externí odkaz:
http://arxiv.org/abs/2407.13144
In this paper, we are concerned with normalized solutions in $H_{r}^{1}(\mathbb{R}^{3}) \times H_{r}^{1}(\mathbb{R}^{3})$ for Hartree-Fock type systems with the form \be\lab{ Hartree-Fock} \left\{ \begin{array}{ll} -\Delta u +\alpha \phi _{u,v} u=\la
Externí odkaz:
http://arxiv.org/abs/2405.01036
This paper is concerned with the Hamiltonian elliptic system in dimension two\begin{equation*}\aligned \left\{ \begin{array}{lll} -\epsilon^2\Delta u+V(x)u=g(v)\ & \text{in}\quad \mathbb{R}^2,\\ -\epsilon^2\Delta v+V(x)v=f(u)\ & \text{in}\quad \mathb
Externí odkaz:
http://arxiv.org/abs/2404.12009
We are concerned with solutions of the following quasilinear Schr\"odinger equations \begin{eqnarray*} -{\mathrm{div}}\left(\varphi^{2}(u) \nabla u\right)+\varphi(u) \varphi^{\prime}(u)|\nabla u|^{2}+\lambda u=f(u), \quad x \in \mathbb{R}^{N} \end{eq
Externí odkaz:
http://arxiv.org/abs/2403.01338