Zobrazeno 1 - 10
of 532
pro vyhledávání: '"ZHANG, HELEN"'
Autor:
Zhong, Zhusi, Zhang, Helen, Fayad, Fayez H., Lancaster, Andrew C., Sollee, John, Kulkarni, Shreyas, Lin, Cheng Ting, Li, Jie, Gao, Xinbo, Collins, Scott, Greineder, Colin, Ahn, Sun H., Bai, Harrison X., Jiao, Zhicheng, Atalay, Michael K.
Purpose: Pulmonary embolism (PE) is a significant cause of mortality in the United States. The objective of this study is to implement deep learning (DL) models using Computed Tomography Pulmonary Angiography (CTPA), clinical data, and PE Severity In
Externí odkaz:
http://arxiv.org/abs/2406.01302
Bessenrodt and Ono, Chen, Wang and Jia, DeSalvo and Pak were the first to discover the log-subadditivity, log-concavity, and the third-order Tur\'{a}n inequality of partition function, respectively. Many other important partition statistics are prove
Externí odkaz:
http://arxiv.org/abs/2308.04678
Autor:
Zhang, Helen W. J., Zhong, Ying
In this paper, we obtain asymptotic formulas for $k$-crank of $k$-colored partitions. Let $M_k(a, c; n)$ denote the number of $k$-colored partitions of $n$ with a $k$-crank congruent to $a$ mod $c$. For the cases $k=2,3,4$, Fu and Tang derived severa
Externí odkaz:
http://arxiv.org/abs/2304.06316
Autor:
Zhang, Hao, Zhang, Helen W. J.
In this paper, motivated by the work of Mahlburg, we find congruences for a large class of modular forms. Moreover, we generalize the generating function of the Andrews-Garvan-Dyson crank on partition and establish several new infinite families of co
Externí odkaz:
http://arxiv.org/abs/2210.01575
Autor:
Zhang, Helen W. J., Zhong, Ying
Bessenrodt and Ono initially found the strict log-subadditivity of partition function $p(n)$, that is, $p(a+b)< p(a)p(b)$ for $a,b>1$ and $a+b>9$. Many other important statistics of partitions are proved to enjoy similar properties. Lovejoy introduce
Externí odkaz:
http://arxiv.org/abs/2206.12833
Autor:
Zhang, Helen W. J., Zhong, Ying
Let $\overline{N}_2(a,c,n)$ be the number of overpartitions of $n$ whose the $M_2$-rank is congruent to $a$ modulo $c$. In this paper, we obtain the asymptotic formula of $\overline{N}_2(a,c,n)$ utilizing the Ingham Tauberian Theorem. As applications
Externí odkaz:
http://arxiv.org/abs/2206.02167
Let $\bar{p}(n)$ denote the overpartition function. In this paper, we study the asymptotic higher order $\log$-concavity property of the overpatition function in a similar framework done by Hou and Zhang for the partition function. This will enable u
Externí odkaz:
http://arxiv.org/abs/2204.07961
Autor:
Montgomery, Kimberly, James, April L., Macrae, Merrin, Tafvizi, Arghavan, Snider, Rebecca, Goel, Pradeep, Zhang, Helen, Yao, Huaxia, Wachowiak, Mark
Publikováno v:
In Journal of Hydrology November 2024 644
Autor:
Katz, Luca, Zhang, Helen, Ireland, Piper, Anuszewski, Maguire, Milner, John D., Liu, Jonathan, Daniels, Alan H., Antoci, Valentin
Publikováno v:
In Journal of Orthopaedics February 2025 60:143-151
Autor:
Spencer, Sascha K.R., Ireland, Patrick A., Braden, Jorja, Hepschke, Jenny L., Lin, Michael, Zhang, Helen, Channell, Jessie, Razavi, Hessom, Turner, Angus W., Coroneo, Minas T., Shulruf, Boaz, Agar, Ashish
Publikováno v:
In Ophthalmology July 2024 131(7):855-863