Zobrazeno 1 - 10
of 1 719
pro vyhledávání: '"ZHAN Xu"'
Autor:
Ren, Yu, Zhan, Xu, Hu, Yunqiao, Ma, Xiangdong, Liu, Liang, Wang, Mou, Shi, Jun, Wei, Shunjun, Zeng, Tianjiao, Zhang, Xiaoling
Array synthetic aperture radar (Array-SAR), also known as tomographic SAR (TomoSAR), has demonstrated significant potential for high-quality 3D mapping, particularly in urban areas.While deep learning (DL) methods have recently shown strengths in rec
Externí odkaz:
http://arxiv.org/abs/2412.16828
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Array synthetic aperture radar (SAR) three-dimensional (3D) imaging can obtain 3D information of the target region, which is widely used in environmental monitoring and scattering information measurement. In recent years, with the development of comp
Externí odkaz:
http://arxiv.org/abs/2405.05565
Publikováno v:
南方能源建设, Vol 11, Iss 5, Pp 86-94 (2024)
[Introduction] The rapid development of new energy vehicles (NEVs) brings higher requirements for the power demand of highways. Based on the analysis of the power loads of highways, the photovoltaic endowment, and the energy storage technologies suit
Externí odkaz:
https://doaj.org/article/910dfa88c11d40008a506e571ed0a143
Autor:
Pablo José López González
A previously described species and a new one belonging to the recently described sea pen genus Alloptilella Li, Zhan & Xu, 2021, are here described and illustrated based on a morphological and molecular study of materials collected in the Tasman Sea
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::f4157ab16555f6804ae9cdfd5ed74261
Autor:
Ni, Xiaochuan, Zhang, Xiaoling, Zhan, Xu, Yang, Zhenyu, Shi, Jun, Wei, Shunjun, Zeng, Tianjiao
This work focuses on multi-target tracking in Video synthetic aperture radar. Specifically, we refer to tracking based on targets' shadows. Current methods have limited accuracy as they fail to consider shadows' characteristics and surroundings fully
Externí odkaz:
http://arxiv.org/abs/2211.15995
Deep learning (DL)-based tomographic SAR imaging algorithms are gradually being studied. Typically, they use an unfolding network to mimic the iterative calculation of the classical compressive sensing (CS)-based methods and process each range-azimut
Externí odkaz:
http://arxiv.org/abs/2211.15002
Benefiting from a relatively larger aperture's angle, and in combination with a wide transmitting bandwidth, near-field synthetic aperture radar (SAR) provides a high-resolution image of a target's scattering distribution-hot spots. Meanwhile, imagin
Externí odkaz:
http://arxiv.org/abs/2211.14990
This work focuses on 3D Radar imaging inverse problems. Current methods obtain undifferentiated results that suffer task-depended information retrieval loss and thus don't meet the task's specific demands well. For example, biased scattering energy m
Externí odkaz:
http://arxiv.org/abs/2211.14989
Autor:
Rania M. Mohamed, Bikash Panthi, Beatriz E. Adrada, Medine Boge, Rosalind P. Candelaria, Huiqin Chen, Mary S. Guirguis, Kelly K. Hunt, Lei Huo, Ken-Pin Hwang, Anil Korkut, Jennifer K. Litton, Tanya W. Moseley, Sanaz Pashapoor, Miral M. Patel, Brandy Reed, Marion E. Scoggins, Jong Bum Son, Alastair Thompson, Debu Tripathy, Vicente Valero, Peng Wei, Jason White, Gary J. Whitman, Zhan Xu, Wei Yang, Clinton Yam, Jingfei Ma, Gaiane M. Rauch
Publikováno v:
Scientific Reports, Vol 14, Iss 1, Pp 1-10 (2024)
Abstract Triple-negative breast cancer (TNBC) is often treated with neoadjuvant systemic therapy (NAST). We investigated if radiomic models based on multiparametric Magnetic Resonance Imaging (MRI) obtained early during NAST predict pathologic comple
Externí odkaz:
https://doaj.org/article/6a9d5085faa94e07a2d7d1b1c2688f40