Zobrazeno 1 - 10
of 138
pro vyhledávání: '"ZEYTUNCU, YUNUS E."'
Autor:
Celik, Mehmet, Duguin, Mathis, Guo, Jia, Luo, Dianlun, Spinelli, Kamryn, Zeytuncu, Yunus E., Zhu, Zhuoyu
In 2021, Dan Reznik made a YouTube video demonstrating that power circles of Poncelet triangles have an invariant total area. He made a simulation based on this observation and put forward a few conjectures. One of these conjectures suggests that the
Externí odkaz:
http://arxiv.org/abs/2410.18863
We obtain an analog of Weyl's law for the Kohn Laplacian on lens spaces. We also show that two 3-dimensional lens spaces with fundamental groups of equal prime order are isospectral with respect to the Kohn Laplacian if and only if they are CR isomet
Externí odkaz:
http://arxiv.org/abs/2206.14250
We look at the action of finite subgroups of $\operatorname{SU}(2)$ on $S^3$, viewed as a CR manifold, both with the standard CR structure as the unit sphere in $\mathbb{C}^2$ and with a perturbed CR structure known as the Rossi sphere. We show that
Externí odkaz:
http://arxiv.org/abs/2110.12413
Let $M= \Gamma \setminus \mathbb{H}_d$ be a compact quotient of the $d$-dimensional Heisenberg group $\mathbb{H}_d$ by a lattice subgroup $\Gamma$. We show that the eigenvalue counting function $N(\lambda)$ for any fixed element of a family of second
Externí odkaz:
http://arxiv.org/abs/2107.07419
We compute the leading coefficient in the asymptotic expansion of the eigenvalue counting function for the Kohn Laplacian on the spheres. We express the coefficient as an infinite sum and as an integral.
Externí odkaz:
http://arxiv.org/abs/2010.04568
Autor:
Sahutoglu, Sonmez, Zeytuncu, Yunus E.
Publikováno v:
Bull. Lond. Math. Soc. 53, 2021, no. 5
Let $\Omega$ be a $C^4$-smooth bounded pseudoconvex domain in $\mathbb{C}^2$. We show that if the $\overline{\partial}$-Neumann operator $N_1$ is compact on $L^2_{(0,1)}(\Omega)$ then the embedding operator $\mathcal{J}:Dom(\overline{\partial})\cap D
Externí odkaz:
http://arxiv.org/abs/2009.13391
Publikováno v:
Eur. J. Math.8(2022), no.1, 403-416
We obtain $L^p$ estimates for Toeplitz operators on the generalized Hartogs triangles $\mathbb{H}_\gamma = \{(z_1,z_2) \in \mathbb{C}^2: |z_1|^\gamma < |z_2|<1\}$ for two classes of positive radial symbols, one a power of the distance to the origin,
Externí odkaz:
http://arxiv.org/abs/2009.07260
Autor:
Zeytuncu, Yunus E.
Although the Bergman projection operator $\mathbf{B}_{\Omega}$ is defined on $L^2(\Omega)$, its behavior on other $L^p(\Omega)$ spaces for $p\not =2$ is an active research area. We survey some of the recent results on $L^p$ estimates on the Bergman p
Externí odkaz:
http://arxiv.org/abs/2005.08311
The complex Green operator $\mathcal{G}$ on CR manifolds is the inverse of the Kohn-Laplacian $\square_b$ on the orthogonal complement of its kernel. In this note, we prove Schatten and Sobolev estimates for $\mathcal{G}$ on the unit sphere $\mathbb{
Externí odkaz:
http://arxiv.org/abs/1910.09674
Autor:
Bansil, Mohit, Zeytuncu, Yunus E.
We present an explicit formula for the leading coefficient in the asymptotic expansion of the eigenvalue counting function of the Kohn Laplacian on the unit sphere $\mathbb{S}^{2n-1}$.
Comment: 7 pages
Comment: 7 pages
Externí odkaz:
http://arxiv.org/abs/1910.09632