Zobrazeno 1 - 10
of 23
pro vyhledávání: '"ZAFER ŞİAR"'
Publikováno v:
Mathematica Bohemica, Vol 148, Iss 4, Pp 507-518 (2023)
Let $k\geq2$ and let $(P_n^{(k)})_{n\geq2-k}$ be the $k$-generalized Pell sequence defined by \begin{equation*} P_n^{(k)}=2P_{n-1}^{(k)}+P_{n-2}^{(k)}+\cdots+P_{n-k}^{(k)} \end{equation*}for $n\geq2$ with initial conditions \begin{equation*} P_{-(k-2
Externí odkaz:
https://doaj.org/article/34e113f1b2354c8ab290f8e9584e4041
Publikováno v:
Mathematica Bohemica. :1-12
Autor:
Zafer Şiar
Publikováno v:
International Journal of Number Theory. 19:41-57
In this paper, we will answer the question of when the sum or the difference of [Formula: see text]th powers of any two Fibonacci numbers becomes a Fibonacci number or a Lucas number. We prove that if this is possible with [Formula: see text], then [
Publikováno v:
Journal of Mathematical Study. 55:84-94
Autor:
ZAFER ŞİAR, REFİK KESKİN
Publikováno v:
Turkish Journal of Mathematics. 46:3083-3094
Publikováno v:
Indian Journal of Pure and Applied Mathematics. 52:861-868
Let $$(F_{n})$$ be the sequence of Fibonacci numbers defined by $$F_{0}=0,~F_{1}=1$$ , and $$F_{n}=F_{n-1}+F_{n-2}$$ for $$n\ge 2.$$ Let $$2\le m\le n$$ and $$b=2,3,4,5,6,7,8,9.$$ In this study, we show that if $$F_{m}F_{n}$$ is a repdigit in base b
Publikováno v:
Bulletin of the Brazilian Mathematical Society, New Series. 52:1025-1040
In this study, we find all Fibonacci and Lucas numbers which can be expressible as a product of two repdigits in the base b. It is shown that the largest Fibonacci and Lucas numbers which can be expressible as a product of two repdigits are $$F_{12}=
Autor:
Zafer Şiar, Refik Keskin
Publikováno v:
Colloquium Mathematicum. 159:119-126
In this paper, we solve Diophantine equation in the tittle in nonnegative integers m,n, and a. In order to prove our result, we use lower bounds for linear forms in logarithms and and a version of the Baker-Davenport reduction method in diophantine a
Publikováno v:
Notes on Number Theory and Discrete Mathematics. 25:96-101
Publikováno v:
Quaestiones Mathematicae; Vol. 44 No. 10 (2021); 1283-1293
Let (Ln ) be the sequence of Lucas numbers defined by L 0 = 2, L 1 = 1, and Ln = L n−1 + L n−2 for n ≥ 2. Let 0 ≤ m ≤ n and b = 2, 3, 4, 5, 6, 7, 8, 9. In this study, we show that if LmLn is a repd...